979-8-3315-5678-5/25/$31.00 ©2025 IEEE

Joint Optimization of Computation Offloading,
Model Caching and Exit Selection for DNN
Inference Tasks

1% Tam Minh Nguyen
School of Electronic Engineering
Soongsil University
Seoul, Republic of Korea
nmtam @soongsil.ac.kr

Abstract—In this work, we solve the joint optimization problem
of offloading, model caching, and exit selection decisions to
minimize the total system delay and maximize the inference
accuracy. We first formulate the problem as a Markov Decision
Process (MDP) and then use the Advantage Actor Critic (A2C)
algorithm to optimize in a dynamic environment. Simulation
results have demonstrated the effectiveness of our proposed
method.

Index Terms—Mobile edge computing, deep reinforcement
learning, computation offloading, early exit, model caching.

I. INTRODUCTION

With the recent rapid advancement of mobile Artificial Intel-
ligence (AI) services, Deep Neural Network (DNN) inference
has become a critical task to be addressed on user devices,
but it faces challenges regarding limited resources. To address
these limitations, computation offloading for DNN inference
tasks has been widely investigated and considered a promising
solution [1]. An advanced technique called early exit has
also been applied to further reduce the computational burden
of DNN inference tasks [2]. However, existing studies focus
only on the offloading process and do not consider the model
caching problem [2], [3], even though DNN models must be
cached to be processed at the edge, and their large size and
diversity, combined with limited edge storage, pose significant
challenges. Motivated by these challenges, this work addresses
the joint problem of model caching, computation offloading,
and early-exit selection, aiming to minimize overall system
delay while maximizing inference accuracy.

II. SYSTEM MODEL
A. Scenario

This work considers a DNN inference offloading system
with a cloud server, a set of non-overlapped edge servers
N ={1,..., N}, and multiple user devices U = {1,...,U}
distributed under their coverage areas. Edge servers are con-
nected through fiber-optic links and to the cloud center via
backhaul links. User devices can communicate with their
local edge server over wireless channels. Each edge server
n € N has computational and storage capacities f™* and S,,,

1549

2" Myungsik Yoo
School of Electronic Engineering
Soongsil University
Seoul, Republic of Korea
myoo@ssu.ac.kr

respectively, and can serve DNN inference offloading requests
from either local or remote devices.

The system operates in a timestep model denoted as ¢t €
{1,...,T}. At each timestep ¢, user device u can generate an
inference offloading task 7,(t) = {ky(t), s.(t)}, where s,(t)
is the task input size and k,(t) = m e M = {1,2,...,M}
denotes the type of DNN inference task. The demand for each
DNN model type is assumed to follow a Zipf distribution,
with each edge server having its own distribution to capture
localized popularity. At each timestep ¢, the model popularity
evolves with correlation to the request frequency observed in
the current slot and additional randomness to reflect stochastic
behavior. Each DNN model of type m is defined as a tuple
{Bm, hm}, where B, = {1,2,...,|B,,|} is the set of blocks
and h,, is the model size. The inference task can exit after
any block b € B,,, with an associated early-exit branch
{cb acct }, where ¢’ is the computation required to process
the block and acc?, is the accuracy achieved if exiting after
block b. We assumed that computing more blocks results in
higher inference accuracy.

After tasks are generated, each device w sends its task
information to the cloud. The cloud then makes global task
offloading decisions X () = {z,n(t)} € {0,1}, where
ZTyn(t) = 1 if device u offloads to edge server n, and exit
selection Y (t) = {yu.(t)}, where y,(t) € By, denotes
the chosen block at which computation exits. After tasks are
processed, caching decisions Z(t) = {zm ()} € {0,1} are
updated for the next timestep to determine which DNN models
should be stored for the next timestep.

B. Communication Model

For simplicity, we assume the wireless channel bandwidth
is equally allocated, with each user device w is allocated a
bandwidth of B,,. The wireless data rate of user device u can
be computed as R, = B, - log, (1 + P”gi;‘(t)) where P, is
the transmission power, o2 is the noise power, and g,,(t) is the
channel gain. The data rate between edge servers over wired
connections is denoted as R;2;, and the data rate from an edge
server to the cloud via the backhaul is denoted as R;s..

ICTC 2025

To perform offloading, devices have to transmit their task
input data to the selected edge server and require a correspond-
ing DNN model to process the task. The transmission delay is
dependent on the offloading decision and the caching status.
When the required DNN model for the inference is cached at
the chosen edges:

o If device u offloads its task to its local edge, the trans-

mission delay is computed as:

su(t)

Ry(t)

o If device u offloads its task to the remote edge u, the
transmission delay is computed as:

trans — Su(t) Su (t)
u Ru (t) Ri2z’

where h is the hop count.

Dturans (t) _

(D

-h, 2

However, within the two above cases, if the required DNN
model is not cached at the selected edge, it must be down-
loaded from the cloud server. Since the DNN model size
hy.,) is much larger than the task input, and the task input
transmission and model downloading can occur in parallel,
task transmission is negligible. The delay in this case is
assumed to be dominated by the model download time:
trans h’ku (t)

D (t) = = 3)

C. Computation Model

At each timestep ¢, edge server n divides its total compu-
tation capacity equally among all offloaded tasks, f,(t) =
% The computation requirement of task 7,(t) de-
pends on the exit selection y,(t) and computed as ¢, (t) =

g;l(lt) CZ“,@)- Task 7,(t) can be offloaded to edge server
n with computation delay D™ (t) = ;ng, and inference

accuracy Accy(t) = accléﬁzﬁ;-

D. Problem formulation

The total delay includes the processing and transmission
delays: Dfotal(t) = Dirans(t) 4 DEo™P(t). The joint problem
of caching, task offloading, and exit selection is formulated
as an optimization problem to minimize the average of total
delay and maximize the average inference accuracy:

T U
>N [aDltt(t) — BAceu(t)] @)

t=1u=1

. 11
XY .20 TU

st. (C1): zyn(t), 2ma(t) € {0,1} Vu,n,m
(€C2): yu(t) < B, |, Yn,u,

(C3) Z Z’m,n(t) : h'rn S Snavn
meM
where (C1) specifies that the caching and offloading de-
cisions are binary; (C2) indicates the exit selection decision
cannot be more than the number of exits in the model; (C3)
states that the total sizes of the cached models cannot exceed
the storage of the edge server; «, 8 are scaling factors.

III. METHOD
A. Popularity-based Caching Model

For any offloading decision, if the required DNN model is
not cached at the selected edge server, the transmission delay
increases significantly due to the download of the model from
the cloud server (Equation (3)). To mitigate this overhead, each
edge server updates its cache based on model request frequen-
cies over a sliding window of W timesteps. Specifically, at
each timestep ¢, the caching decision Z(t) = {zy (t)} for
edge server n is determined by selecting the most frequently
requested model types within the past W timesteps, subject
to constraint (C3). As a result, the most popular models are
proactively cached at each edge server for the next timestep,
thereby reducing the chance of cache misses.

B. MDP-based Task Offloading and Exit Selection problem

Given the cache status Z(t), which can be determined
as described in Section III-A, we want to make the task
offloading and exit selection decision to optimize the objective
in Equation (4). The optimization problem in Section II-D is
reformulated as and Markov Decision Process (MDP).

« State Space:

St) ={2(t), {su(®)} {ca ()}, {gu(®)}, {fn()}}
o Action Space:
At) ={X @), Y1)}
« State Transition Probability:
PS4+ 1)[(S(t), A())

¢ Reward:

U
1 total
R(t) = -5 2221 oD} () — BAW(D)]
To solve this, we adopt A2C algorithm, which is an on-
policy Reinforcement Learning algorithm that can work with
either a discrete or continuous action space.

IV. EXPERIMENTATION

For the experiment, we consider a system consisting of
N = 3 edge servers, and U = 30 users. Each edge server has
frer = 20 GHz computing power and S,, = 8 GB storage.
There are M = 15 DNN task types with model sizes h,,
of 300-800 MB and input sizes s,,(t) of 0.5-1 MB, following
the Uniform distribution. The total bandwidth B,, of each edge
server is 20 MHz. We train the models for 50000 steps at a
learning rate of 7 x 10~* using Adam optimizer and evaluate
the results after 500 timesteps.

The evaluation result includes the average delay and the
average accuracy. We compare our method with four base-
lines: Random Decisions, which randomly selects offloading,
caching, and exit points within constraints; Random Caching,
which randomly selects caching decisions while optimizing
offloading and exits accordingly; Local Edge Server, which
offloads to each user device’s corresponding server with

1550

popularity-based caching and optimizes the exit decisions; and
No Early Exit, where the inference exits at the final block,
uses popularity-based caching, and optimizes the offloading
decisions. The evaluation results of our proposed method,
along with other comparison schemes, are shown in TABLE I

TABLE I
COMPARISON RESULT OF DIFFERENT METHODS

Scheme Delay(ms) Accuracy

Random Decisions 889.4887 0.7955
Random Caching 750.2834 0.8289
Local Edge Server 507.1049 0.7724
No Early Exit 706.3284 0.8733
Joint optimization 500.2266 0.8591

As we can observe from the results, the Random Decisions
and Random Caching schemes cause the highest delay. This
is because the Random Caching scheme does not effectively
utilize the edge storage, causing long model downloading time.
Compared with other schemes, our proposed method achieves
the lowest delay while maintaining the accuracy close to that
of the No Early Exit scheme, therefore providing an optimal
trade-off between accuracy and delay.

V. CONCLUSION

In this paper, we have proposed a joint optimization frame-
work for computation offloading, model caching, and exit
selection for the inference tasks from DNN applications. By
leveraging early exit mechanism, our proposed method can
effectively reduce the computational burden and the processing
delay. Simulation results have demonstrated the effectiveness
of our proposed method. In the future, we plan to consider
more effective caching methods besides our current caching
policy based on popularity.

ACKNOWLEDGMENT

This work was supported in part by Institute of Information
and Communications Technology Planning and Evaluation
(IITP) grant funded by the Korean government (MSIT) (No.
RS-2022-11221015, Development of Candidate Element Tech-
nology for Intelligent 6G Mobile Core Network); and in
part by the MSIT (Ministry of Science and ICT), Korea,
under the ITRC (Information Technology Research Center)
support program (IITP-2025-RS-2021-11212046) supervised
by the IITP (Institute for Information and Communications
Technology Planning and Evaluation).

REFERENCES

[1] Ren, WQ., Qu, YB., Dong, C. et al. A Survey on Collaborative DNN
Inference for Edge Intelligence. Mach. Intell. Res. 20, 370-395 (2023).
https://doi.org/10.1007/s11633-022-1391-7

[2] Z. Liu et al., "Hastening Stream Offloading of Inference via Multi-
Exit DNNs in Mobile Edge Computing,” in IEEE Transactions on
Mobile Computing, vol. 23, no. 1, pp. 535-548, Jan. 2024, doi:
10.1109/TMC.2022.3218724.

[3] Dong, Fang, Huitian Wang, Dian Shen, et al. “Multi-Exit DNN Infer-
ence Acceleration Based on Multi-Dimensional Optimization for Edge
Intelligence.” IEEE Transactions on Mobile Computing 22, no. 9 (2023):
5389-405. https://doi.org/10.1109/TMC.2022.3172402.

1551

