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Abstract—We evaluate a dynamic, cross-layer load-balancing
policy for autonomous vehicles in a three-tier OBU–RSU–Cloud
architecture using a city-scale, testbed-style simulation. At
each slot, the policy jointly considers compute queues
(OBU/RSU/Cloud) and network state (PDR, link quality) to
select the processing location (local, RSU, or cloud). We com-
pare against Local-Only and Offloading-Only baselines. The
simulation instantiates 400 vehicles, 50 RSUs, and one cloud
with periodic tasks and per-slot decisions. Under normal to
moderate congestion, the proposed policy consistently achieves
queue stability, higher average PDR, and lower energy than
the baselines. However, when vehicle clustering creates an RSU
hotspot, we observe a sharp PDR drop at the hotspot and
ripple effects that degrade neighboring RSUs, indicating that
load balancing alone cannot overcome physical-layer capacity
limits. This motivates practical guardrails—such as association
control (caps/biasing), interference-aware scheduling, and predic-
tive hotspot avoidance—to secure reliability.

Index Terms—Vehicular Edge Computing, Offloading, Load
Balancing, Packet Delivery Ratio, Congestion, Lyapunov Opti-
mization

I. INTRODUCTION

Autonomous vehicles (AVs) increasingly run safety-critical
perception and control together with data-hungry infotain-
ment (AR navigation, streaming, conferencing) [1]. To meet
tight latency and reliability constraints without exhausting on-
board power, AV stacks rely on hierarchical computing—on-
board units (OBUs), roadside edge servers (RSUs), and the
cloud—plus wireless offloading [2]. In dense urban corridors,
however, many AVs attempt to offload simultaneously, causing
wireless contention and edge overload to co-occur. The result
is a drop in packet delivery ratio (PDR), queue build-up, and
end-to-end (E2E) latency spikes that directly threaten service
level objectives.

The core difficulty is cross-layer coupling. Wireless quality
(fading, interference, scheduling) modulates the effective of-
fload rate; compute queues determine completion delay; both
evolve under mobility. A naive “always offload” policy can sat-
urate RSUs and air-interface resources; a conservative “always
local” policy wastes available capacity and increases energy
draw. Moreover, hotspots—temporary vehicle clustering at a
few RSUs—induce localized collapse and ripple effects that
degrade neighboring cells via interference/backoff coupling
[3].

Fig. 1: Integrated simulator architecture.

Existing policies often optimize either networking (e.g.,
link-aware offloading) or computing (e.g., queue/energy-aware
placement) in isolation, rely on small-scale or static setups,
or ignore the dynamics of mobility and interference [4], [5].
These assumptions mask the non-linear interaction between
PDR, effective rate, queue stability, and energy in realistic,
city scale scenarios. As a result, policies that look good in
siloed models can underperform when wireless congestion and
compute overload coincide.

We develop and analyze a dynamic, cross-layer load-
balancing policy that (i) translates instantaneous PDR into
an effective offload rate, (ii) uses a Lyapunov drift-plus-
penalty objective to co-optimize queue stability and energy,
and (iii) operates over a three-tier OBU/RSU/Cloud architec-
ture within a synchronized simulator. We compare Local-Only,
Offloading-Only, and the proposed Dynamic policy. Results
show that Dynamic sustains high PDR under typical loads
by flexibly mixing local processing and offloading, while
revealing a fundamental limit under extreme hotspots where
localized collapse and neighbor degradation emerge.

II. SYSTEM MODEL

A. Simulator architecture

We consider an AV network with three compute tiers (OBU,
RSU, Cloud) coupled with a wireless access subsystem (e.g.,
PC5/Uu) [6]. Time is slotted. At each slot t, each vehicle
generates a task and must choose Local, RSU offload, or Cloud
offload. As shown in Fig. 1, the simulator updates mobility,
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TABLE I: Network simulator parameters

Parameter Value

Technology LTE-V2X
Subcarrier spacing 15 kHz
Modulation order 64-QAM
Bandwidth 10MHz
Channel coding Turbo code
TTI duration 1ms
Code rate 0.8333
Channel model WINNER+
Tx power 23 dBm
Antenna gain 3 dB
Noise figure 9 dB
Thermal noise −101 dBm

TABLE II: Computation (queue/energy) parameters

Parameter Value

CPU frequency range 100MHz – 1GHz
α 2× 10−7

β 0.1
γ 1.1× 10−2

Avg. arrival 1920Mbit
Std. arrival 500Mbit
Avg. offload 2400Mbit
Std. offload 480Mbit
RSU processing capacity 360Mbit/slot
Cloud processing capacity 2880Mbit/slot
Network power(Pnet) 2W
V 0.45× 107

computes wireless KPIs (PDR, rate), updates queues/energy,
and applies the controller’s decision. The tables summarize
the parameters used in the simulator. Table I lists the network-
simulator parameters, and Table II lists the computation pa-
rameters.

B. Effective offload transmission rate

Let ρ(t) ∈ [0, 1] denote packet delivery ratio (PDR) and
R(t) the nominal PHY rate. The effective rate available to
offloading is

Reff(t) = ρ(t)R(t), (1)

so that fading/interference reduce usable throughput linearly
in ρ. As ρ falls (congestion, distance, collisions), offloading
benefit diminishes sharply: arrivals to remote queues drop
while retransmissions inflate delay/energy.

C. Queue model

Let Qi(t), Qj(t), Qk(t) be the queue backlogs at OBU i,
RSU j, and Cloud k. With arrivals ai(t) and service u(t), the
queues evolve as

Qi(t+1) = max{Qi(t) + ai(t)− ui(t), 0}, (2)

Qj(t+1) = max{Qj(t) +Reff
ij (t)− uj(t), 0}, (3)

Qk(t+1) = max{Qk(t) +Oeff
i (t)− uk(t), 0}, (4)

where Reff
ij (t) = ρij(t)Rij(t) is the effective OBU→RSU rate

and Oeff
i (t) = ρi(t)Oi(t) the effective OBU→Cloud rate.

D. Cost function

We adopt a Lyapunov drift-plus-penalty objective that trades
queue stability against energy:

min E
[
∆L

(
Q(t)

)
+ V E(t)

]
. (5)

where L(·) is a quadratic Lyapunov function, E(t) the slot
energy, and V > 0 controls the delay–energy trade-off.

Local processing (with DVFS). If the OBU selects local
compute at frequency fi,

Costlocal = min
fi

{
V
(
αf3

i + β
)
−

(
fi
γ − ai(t)

)
Qi(t)

}
. (6)

The f3
i term captures dynamic power; the queue term promotes

higher fi when Qi is large or offloading is unappealing.
RSU offloading.

CostRSU = V Pnet −
(
Reff

ij (t)− ai(t)
)
Qi(t) +Reff

ij (t)Qj(t).
(7)

High PDR/throughput (large Reff
ij (t)) helps drain , but a

congested RSU (large Qj(t)) raises cost.
Cloud offloading.

Costcloud = V Pnet −
(
Oeff

i (t)− ai(t)
)
Qi(t) +Oeff

i (t)Qk(t).
(8)

Backhaul/RTT effects are abstracted into Oeff
i (t) and Qk(t).

Decision rule. Each slot,

Decision(t) = argmin
{
Costlocal, CostRSU, Costcloud

}
,

(9)
with f∗

i returned if Local is chosen.

III. SIMULATION RESULTS

A city-scale virtual testbed is instantiated over a real road
graph. Unless stated, we use 400 vehicles, 50 RSUs, and one
cloud. Vehicles generate periodic tasks per slot and associate
to nearby RSUs. We compare Local-Only, Offloading-Only,
and Dynamic. The primary metric is RSU-level PDR as a
function of the number of simultaneously associated vehicles
at that RSU.

When every task is offloaded as shown in Fig. 2a, air-
interface contention and RSU ingress queues grow in lock-
step. Even at modest association counts, many RSUs exhibit
PDR < 0.6. With ρ depressed, (1) yields small Reff ,
retransmissions increase, and E2E reliability degrades. By
selecting Local when links/RSUs are stressed and offloading
when channels are clear, Dynamic flattens RSU load peaks and
keeps most RSUs in PDR ≈ 0.8–0.98 (Fig. 2b). The policy
naturally exploits temporal diversity across tiers. For a forced
cluster (AVs on one RSU), that RSU’s PDR drops sharply, and
neighboring RSUs also degrade due to interference/backoff
coupling (Fig. 2c). Once physical-layer capacity at a hotspot
is exceeded, decisions cannot locally restore reliability; nearby
cells feel the ripple effect. PDR generally declines with
association count, but two RSUs at the same count may differ
significantly due to geometry, interference topology, and reuse
patterns.
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(a) Offloading-Only

(b) Normal-Dynamic

(c) Congested-Dynamic

Fig. 2: Analysis of the relationship between number of con-
nected vehicles served by each RSU and average PDR.

IV. CONCLUSION

We presented a cross-layer dynamic load-balancing policy
that converts PDR into effective rate, optimizes a drift-plus-
penalty objective, and runs over a three-tier OBU/RSU/Cloud
architecture. In city-scale simulations, Dynamic maintains
high PDR under normal density by flexibly mixing local
compute and offloading, yet exposes a fundamental limit
under extreme hotspots where localized collapse and neighbor
degradation occur. Future work will integrate interference-
aware scheduling, association control, and predictive hotspot
avoidance so that the controller not only reacts to congestion
but also preempts it through topology-level measures.
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