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Abstract—With the rapid growth of Vehicle-to-Everything
(V2X) communications, ensuring secure and reliable data ex-
change has become a critical challenge in intelligent trans-
portation systems (ITS). In particular, conventional intrusion
detection systems (IDS) often struggle to detect zero-day attacks
or maintain effectiveness under ultra-low false positive rate (FPR)
conditions. This paper proposes a hybrid Intrusion Detection
System (IDS) based on Convolutional Neural Network (CNN)
and Long Short-Term Memory (LSTM) that integrates spatial
and temporal modeling to detect complex anomalies in dynamic
V2X traffic. The proposed model is evaluated on both known
and previously unseen attack scenarios using the CICIDS-2017
dataset, demonstrating robust detection performance under low-
FPR constraints. These results highlight the model’s practical
applicability to safety-critical V2X environments requiring high
reliability and real-time responsiveness.

Index Terms—V2X communication, intrusion detection system,
deep learning, CNN-LSTM, zero-day attack, false positive rate

I. INTRODUCTION

With the advancement of intelligent transportation systems
(ITS), vehicle-to-everything (V2X) communication has be-
come a core infrastructure supporting autonomous driving.
V2X enables not only simple information exchange but also
supports a wide range of real-time automotive applications
such as platooning [1], [2], vehicle-edge computing (VEC) for
task offloading [3], [4], remote driving [5], [6], and intersection
management [7]. As these applications continue to evolve,
the importance of V2X communication is becoming increas-
ingly prominent. However, V2X systems have vulnerability
to a wide range of security threats since they rely on the
wireless connectivity. Moreover, issues such as incomplete
authentication procedures, inadequate key management, and
insufficient integrity verification mechanisms may compromise
the overall reliability of the system by enabling adversaries to
inject forged messages or disrupt communication flows [8].
Given that V2X is a real-time system demanding ultra-low
latency (on the order of milliseconds) and reliability exceeding
99.99% [9], these security threats may lead not only to perfor-
mance degradation but also to immediate system malfunctions
or decision-making errors [10]. For instance, Denial-of-Service
(DoS) attacks may prevent specific vehicles or infrastructure
nodes from participating in communication [10], [11], while
replay attacks can mislead the system by injecting outdated
but seemingly valid information [8].
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To counter these security threats, rule-based intrusion de-
tection systems (IDS) were among the earliest approaches
employed [12]. While these systems are effective in detecting
predefined attack types through explicit signatures or fixed
rules, they face substantial limitations in identifying zero-
day attacks that mimic normal traffic behavior [13], [14].
These limitations are particularly pronounced in V2X environ-
ments, where highly dynamic traffic patterns resulting from
diverse driving scenarios and communication context render
static rule-based methods insufficient for detecting real-world
anomalies. Specifically, supervised learning models have been
employed to distinguish benign communication flows from
various types of malicious behavior [13]-[17]. Ali et al. com-
pared the detection performance and training efficiency of var-
ious machine learning models, Convolutional Neural Network
(CNN), Support Vector Machine (SVM), and Random Forest
as suitable candidates for V2X security applications [14].
Sommer and Paxson analyzed the feasibility of ML-based IDS,
highlighting the challenges of managing the false positive rate
(FPR) and ensuring generalization performance in real-world
network environments [13]. Shone et al. devised an anomaly
detection model based on a stacked autoencoder architecture
and validated its capability in isolating malicious behaviors
within complex traffic flows [15]. Kim et al. implemented
a hybrid Convolutional Neural Network—Bidirectional Long
Short-Term Memory (CNN-BiLSTM) architecture for real-
time detection through V2X simulation experiments, achieving
a consistently high true positive rate (TPR) [16]. Additionally,
Zhang and Yan introduced a Random Forest-based IDS de-
signed for online analysis of large-scale traffic in Vehicular
Ad-hoc Network (VANET) environments, achieving superior
detection performance and processing efficiency compared to
traditional rule-based methods [17]. These studies reinforce
the feasibility of real-time V2X security systems by offering
improved detection flexibility and automated feature learning
capabilities, in contrast to conventional signature-based ap-
proaches.

However, previous works predominantly have considered
static training and testing environments with predefined attack
types. As a result, their detection performance against previ-
ously unseen threats, such as zero-day attacks, has not been
thoroughly validated. This suggests that existing detection
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models exhibit limited generalization capabilities, particularly
considering that previously unseen attack types may arise in
real-world V2X deployments without prior exposure during
training. Korba et al. pointed out the limited capability in de-
tecting zero-day attacks of supervised learning-based models
and proposed a federated learning-based architecture that en-
ables model training without sharing raw data [18]. Similarly,
Xu et al. employed data augmentation techniques for detect-
ing zero-day attacks in IoV scenarios [19]. However, both
approaches do not explicitly consider FPR control and were
evaluated under constrained settings that do not adequately
reflect the operational requirements of V2X environments,
including ultra-low latency, high reliability, and scalability
under dynamic vehicular traffic conditions.

Additionally, in V2X systems, one of the most critical con-
siderations for practical deployment is minimizing the FPR.
In real-world operations, a high FPR not only undermines
operator trust and delays timely responses but also leads to
alert fatigue in automated systems, ultimately reducing both
alert reliability and operational efficiency [20]. Nevertheless,
many prior studies have focused primarily on performance
metrics such as average Fl-score or the area under the receiver
operating characteristic curve (ROC-AUC), with limited atten-
tion to performance in low-FPR regions—particularly, how the
TPR varies when the FPR is constrained to 0.01 or below [13],
[18]. To overcome these limitations, this study proposes a ML-
based IDS designed to maintain high TPR under low-FPR
conditions and enhance robustness against zero-day attacks.
The main contributions of this study are as follows:

o We propose a CNN-LSTM-based IDS, where the CNN
layers extract local spatial patterns from V2X packet
flows and the LSTM layers capture temporal dependen-
cies and inter-packet correlations to effectively detect
complex anomalies.

o To validate the effectiveness of the proposed approach,
we evaluate its performance against both known and
zero-day attacks in V2X communication scenarios. Ad-
ditionally, we compare it with representative supervised
learning-based models, including Decision Tree, Random
Forest, XGBoost, LightGBM, and LSTM. Simulation
results demonstrate that the proposed method outperforms
baseline models in both known and zero-day attack
scenarios, particularly under low-FPR conditions, high-
lighting its robustness and generalization capability in
dynamic V2X environments.

e We analyze TPR behavior under an ultra-low-risk region
of FPR < 0.01, which is not deeply scrutinized in previ-
ous works. The simulation results show that the proposed
method markedly outperforms baseline approaches in
terms of effectiveness and stability under the low-FPR
constraint.

The remainder of this paper has the following structure.
Section II describes the proposed CNN-LSTM-based IDS
model. Section III explains the simulation configuration, and
performance analysis under both known and zero-day attack

scenarios, with a particular focus on low-FPR conditions.
Finally, Section IV summarizes the paper.

II. PROPOSED METHOD

A. CNN+LSTM Architecture

This paper presents a hybrid deep learning framework that
combines CNN and LSTM architectures to capture both local
and sequential characteristics of V2X traffic. The CNN com-
ponent extracts localized spatial dependencies among packet
flow features, whereas the LSTM component learns long-
range temporal dynamics across sequential traffic patterns. The
overall architecture of the proposed CNN+LSTM model is
shown in Fig. 1. The input consists of a sequence of network
flows, where each flow is represented as a fixed-length vector
of normalized numerical features. The CNN layers apply
one-dimensional convolution to extract spatial dependencies
across adjacent flows and detect abrupt deviations or structural
anomalies. Subsequently, the extracted spatial features are
passed to stacked LSTM layers, which capture long-range tem-
poral dependencies and recurring traffic patterns. A final dense
layer with a sigmoid activation function produces a binary
classification output, indicating whether the input sequence is
benign or malicious. By jointly learning spatial correlations
and temporal evolution of traffic patterns, the framework ef-
fectively identifies complex attack signatures, which enhances
detection robustness in dynamic V2X environments.

B. Attack Scenarios and Dataset

Connected vehicular systems are vulnerable to a wide range
of cyber threats since they rely on real-time communication
among vehicles, Roadside Units (RSUs), and cloud infrastruc-
ture. This study focuses on representative attack types that
reflect practical security threats in V2X environments.

o DoS/DDoS: These attacks overwhelm centralized com-
ponents in Vehicle-to-Infrastructure (V2I) or Vehicle-to-
Network (V2N) communication, such as RSUs and traffic
management servers, by generating excessive traffic. As a
result, they can disrupt congestion control, signal timing,
and emergency vehicle coordination.

o PortScan: Attackers use PortScan techniques to probe
RSUs or On-Board Units (OBUs) for open ports and
vulnerable services. This activity typically serves as a
reconnaissance phase prior to executing more targeted
intrusions.

« Infiltration: These attacks exploit security flaws in V2X
interfaces to gain unauthorized access to internal Elec-
tronic Control Units (ECUs). Once compromised, attack-
ers may manipulate sensor data or interfere with vehicle
control logic.

o Heartbleed: These attacks target known vulnerabilities
in the Transport Layer Security (TLS) protocol to ex-
tract sensitive information, such as GPS coordinates or
cryptographic keys, especially in Vehicle-to-Cloud (V2C)
communications.
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Fig. 1. CNN+LSTM architecture.

The CIC-IDS2017 dataset is utilized for empirical evalua-
tion, as it provides labeled instances of both benign and ma-
licious network flows. All attack categories are relabeled into
binary labels: BENIGN or ATTACK. To evaluate generalization
and zero-day performance, the dataset is divided as follows.

o Training Set: It consists of benign flows and DDoS
attack traffic collected on Friday. It is augmented with
additional benign flows from Monday to improve diver-
sity.

o« Known Attack Test Set: The known attack test set
includes DoS attacks such as Slowloris, Slowhttptest,
and Hulk. These attacks are similar in nature to the
training data but are excluded from training to evaluate
generalization.

e Zero-Day Attack Test Set: The zero-day attack test set
contains previously unseen threats such as Heartbleed,
PortScan, and Infiltration. These are used to assess the
model’s robustness against novel or mutated attacks.

C. Data Preprocessing and Sequence Construction

To support temporal modeling, the system organizes net-
work flows into fixed-length sequences using a sliding window
of size 30. Each sequence contains 30 consecutive flows and is
labeled based on the class of the last flow, simulating real-time
inference conditions where only past and current observations
are available.

For deep learning models, only numerical features are used
as input. String-based attributes, including IP addresses, are
converted into integer representations to ensure compatibil-
ity with neural network architectures. All input features are
normalized using Min-Max scaling. Flow records containing
missing or corrupted values are excluded from training and
evaluation. In contrast, tree-based models operate on individual
flow instances without sequence construction, serving as non-
temporal baselines for comparative evaluation. This prepro-
cessing strategy enables the proposed deep learning models to
exploit temporal dependencies across flows while providing a
consistent input format across all model types.

III. SIMULATION RESULTS

A. Simulation Environments

All experiments are conducted on a PC equipped with
two NVIDIA RTX 3080 GPUs and an Intel i9-10900X CPU
running at 3.7 GHz. Deep learning models are implemented
using TensorFlow, while tree-based models are implemented
using Scikit-learn, XGBoost, and LightGBM libraries.

B. Baseline Models and Evaluation Strategy

To evaluate the effectiveness of the proposed CNN+LSTM
model, we conduct comparative experiments with several base-
line models. As deep learning-based baselines, we consider
a CNN-only model that extracts local spatial patterns using
stacked one-dimensional convolution and pooling layers, and
an LSTM-only model that captures temporal dependencies
through stacked LSTM layers. These models are designed
to isolate the individual contributions of spatial and temporal
modeling, respectively, and serve as ablation baselines for the
proposed hybrid architecture. The structures of the CNN-only
and LSTM-only models are illustrated in Fig. 2 and Fig. 3,
respectively. In addition to the deep learning baselines, we
evaluate four representative tree-based classifiers: Decision
Tree, Random Forest, XGBoost, and LightGBM [14]. Unlike
neural network-based models, these algorithms treat each flow
as an independent sample without modeling temporal depen-
dencies, thereby serving as non-sequential learning baselines.
All models are trained and tested using the same dataset parti-
tions described in Section II-B. Hyperparameters for the deep
learning and tree-based models are summarized in Table I and
Table II, respectively. Deep learning models are trained using a
unified configuration, while tree-based models are individually
tuned according to commonly adopted best practices for each
algorithm.

Model performance is assessed using standard binary clas-
sification metrics, including accuracy, precision, recall, F1-
score, and AUC. In addition, we specifically evaluate the TPR
under a low FPR (< 0.01), which is critical for latency-
sensitive and safety-critical applications such as V2X.
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Fig. 3. Baseline LSTM model architecture.

C. Performance on DoS/DDoS Attacks

To evaluate the generalization capability of the proposed
model on previously excluded but similar attack categories,
we test it on DoS and DDoS samples excluded during train-
ing. Table III presents the performance of each model. The
proposed CNN+LSTM architecture achieves the best overall
results, with a recall of 0.97 and an Fl-score of 0.98. While
the CNN model also demonstrates strong recall (0.96), its
relatively lower precision results in more false positives. On
the other hand, the LSTM model maintains more balanced
precision but exhibits a slightly lower recall (0.94), indicating
that relying solely on temporal dependencies may limit de-
tection of short-duration anomalies. These outcomes highlight
the complementary nature of spatial and temporal modeling,
which the hybrid architecture successfully integrates. Among
the tree-based models, XGBoost and LightGBM exhibit com-

TABLE I
HYPERPARAMETERS FOR DEEP LEARNING MODELS
Parameter Value
Batch Size 256
Epochs 50
Optimizer SGD

Loss Function
Early Stopping

Binary Cross-Entropy
Patience = 5 (monitoring validation loss)

TABLE II
HYPERPARAMETERS FOR TREE-BASED MODELS
Model ];\/el ;(h N_estimators Le}e{lzrtléng E‘E(r)lg
Decision Tree 10 - - -
Random Forest 10 100 - -
XGBoost 10 1000 0.2 75 (logloss)
LightGBM 10 500 0.1 50 (logloss)

TABLE III
PERFORMANCE ON KNOWN D0OS/DDOS ATTACKS

Model Accuracy (%)  Precision  Recall  Fl-score
CNN+LSTM 98.43 0.98 0.97 0.98
LSTM 97.11 0.97 0.94 0.95
CNN 95.90 0.92 0.96 0.94
Decision Tree 91.41 0.83 0.96 0.89
Random Forest 88.71 1.00 0.62 0.77
XGBoost 97.17 1.00 0.95 0.97
LightGBM 98.29 0.98 0.96 0.97
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Fig. 4. ROC curves for known DoS/DDoS attacks

petitive Fl-scores of 0.97, comparable to those of the deep
learning models. Decision Tree and Random Forest perform
significantly worse, achieving Fl-scores of only 0.89 and
0.77, respectively. Their performance is constrained by their
inability to learn from sequential flow structures, leading to
overfitting on simple patterns and failure to handle dynamic
traffic behaviors.

To further investigate performance under stringent oper-
ational conditions in V2X environments, we analyze ROC
curves in the low-FPR region, as illustrated in Fig. 4. The
proposed architecture maintains a TPR of 0.98 under this con-
straint, outperforming CNN (0.94), LSTM (0.91), XGBoost
(0.96), and LightGBM (0.81). In contrast, Decision Tree and
Random Forest yield TPRs below 0.1, indicating their limited
applicability under low-risk and high-reliability conditions.
This implies that the proposed architecture achieves superior
detection of DoS and DDoS attacks, especially under low false
positive constraints, by capturing both bursty and repetitive
patterns in network traffic. These results highlight the op-
erational benefits of spatio-temporal modeling in enhancing
detection reliability in latency-sensitive settings.

D. Performance on Zero-Day Attacks

In the zero-day detection scenario, where attack types are
not seen during training, the proposed architecture demon-
strates the highest performance. As shown in Table IV, the
CNN+LSTM model achieves an Fl-score of 0.98 and a recall
of 0.99, outperforming all baseline models. The CNN model
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TABLE IV
PERFORMANCE ON ZERO-DAY ATTACKS

Model Accuracy (%)  Precision  Recall  Fl-score
CNN+LSTM 97.42 0.96 0.99 0.98
LSTM 93.22 0.97 0.91 0.94
CNN 96.61 0.95 0.98 0.97
Decision Tree 47.94 1.00 0.06 0.12
Random Forest 44.31 0.16 0.00 0.00
XGBoost 55.48 0.89 0.03 0.07
LightGBM 44.52 0.00 0.00 0.00
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Fig. 5. ROC curves for zero-day attack detection

also delivers strong results with an Fl-score of 0.97 and a
recall of 0.98, indicating its effectiveness in capturing short-
term, localized anomalies. The LSTM model attains a recall
of 0.91 and an Fl-score of 0.94, reflecting its strength in
modeling long-term dependencies but limited capability in de-
tecting abrupt or short-lived attacks. In contrast, all tree-based
models—including Decision Tree, Random Forest, XGBoost,
and LightGBM—exhibit recall values below 0.1, indicating
poor generalization to previously unseen threats.

As shown in Fig. 5, the CNN+LSTM model maintains a
TPR of 0.98 under a strict FPR constraint of 0.01, which
is critical for reliable intrusion detection in V2X systems.
The CNN model maintains a TPR of 0.96 under the same
condition, ranking second among all models. This result
demonstrates that CNN is highly effective in detecting local-
ized anomalies, even without explicitly modeling temporal in-
formation. The LSTM model achieves a TPR of approximately
0.85, suggesting that relying solely on temporal modeling
may limit the detection of sudden or irregular patterns. Tree-
based models fail to achieve meaningful TPR values under
low-FPR constraints, further confirming their limitations under
distribution shifts. These findings confirm that the integration
of spatial and temporal modeling is essential for resilient zero-
day attack detection. The proposed CNN+LSTM architecture
exhibits strong generalization capabilities against previously
unobserved and evolving traffic behaviors, maintaining high
detection reliability even under distribution shifts.

IV. CONCLUSION

In this paper, we proposed an IDS based on the hybrid
architecture of CNN-LSTM to address the security challenges
of V2X communications. By combining spatial and temporal
modeling, the proposed CNN+LSTM architecture effectively
detects both localized and sequential anomalies in network
traffic. Experimental result demonstrated that the proposed
method consistently outperforms conventional machine learn-
ing and single-stream deep learning baselines under both
known and zero-day attack scenarios. In particular, the model
maintained a high TPR under an ultra-low FPR threshold
of 0.01, which is critical for deployment in safety-critical
and latency-sensitive V2X environments. Such robustness is
particularly important in dynamic V2X settings, where traffic
characteristics and threat vectors change rapidly and timely
intrusion response is essential for maintaining operational
safety.
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