979-8-3315-5678-5/25/$31.00 ©2025 IEEE

Attribute-Guided and Hybrid Approaches for
Interpretable 3D Object Retrieval

Juwon Lee
Content Research Division
ETRI
Daejeon, Rep. of Korea
zacurr @etri.re kr

Abstract—We propose a 3D content retrieval framework that
enables interpretable, efficient, and user-controllable search.
Existing methods often rely on latent embeddings, which lack
semantic transparency. In contrast, our approach extracts explicit
semantic attributes, such as shape, material, and style, from 3D
object descriptions. We develop two retrieval prototypes: (1) an
attribute-only system using interpretable keywords and (2) a
hybrid system combining feature similarity and attribute-based
filtering. Using a testbed of 3D objects from Objaverse dataset
and ULIP-Objaverse-Triplets resource, we demonstrate improved
retrieval control and alignment with user intent.

Index Terms—3D object retrieval, attribute extraction, re-
trieval by attribute

I. INTRODUCTION

The success of CLIP [1] has advanced vision-language
understanding by enabling flexible multimodal tasks and in-
spiring models like DALL-E, Stable Diffusion, and large
multimodal models (LMMs). Motivated by this, large-scale
3D datasets such as Objaverse [2] and Objaverse-XL [3] have
emerged to support similar advancements in the 3D domain.

Building on these datasets, models like ULIP [4] and Open-
Shape [5] learn joint embeddings across 3D objects, images,
and text, enabling multimodal tasks like 3D retrieval and
classification. However, most training captions are templated
from sparse metadata (e.g., a picture of [object] or a point
cloud model of [object]), limiting their semantic richness and
weakening text alignment in downstream tasks.

To address this, ULIP-2 [6] uses a fully automated pipeline
to render 3D models into multi-view images and generate
richer captions using vision—language models like BLIP-2 [7].
This improves the quality of textual supervision and broadens
usable training data.

In 3D content retrieval, textual descriptions are embedded
into a joint feature space alongside visual and 3D represen-
tations. However, rather than directly leveraging the textual
information, the retrieval process relies solely on similarity
within the embedding space. This indirect use of text can result
in suboptimal results, often retrieving content that is semanti-
cally misaligned with the user’s intent due to weak alignment
between the text and other modalities. When relevant results
are not returned, users are often forced to reformulate their
queries—whether in the form of text, images, or 3D mod-
els—multiple times, leading to repeated feature extraction and

Suwoong Lee
Content Research Division
ETRI
Daejeon, Rep. of Korea
suwoong @etri.re.kr

1160

Seungjae Lee
Content Research Division
ETRI
Daejeon, Rep. of Korea
seungjlee @etri.re.kr

similarity computation. This process significantly increases
overall retrieval time and computational cost.

In this paper, we propose a new retrieval framework that
pre-extracts semantic attributes—such as shape, material, and
components—from 3D object descriptions and uses them
directly during retrieval. This approach improves precision,
transparency, and efficiency by enabling attribute-guided fil-
tering and interpretable interaction.

II. DATASET ANALYSIS AND PREPROCESSING

We use Objaverse [2] as the source of 3D models for our
experiments. Although it includes over 800K assets with asso-
ciated metadata, the quality and consistency of this metadata
vary widely, limiting its direct usability for semantic retrieval.

A. Metadata Limitations

We focus on four text-based metadata fields relevant to
attribute extraction: name, categories, tags, and description.
Although intended to convey semantic information, many en-
tries are missing or contain non-informative content, reducing
their utility for downstream tasks.

o Name: While some names are meaningful (e.g., ‘wooden
chair’), many are placeholders or arbitrary strings (e.g.,
‘testl’, ‘1234’).

o Categories: Based on Sketchfab’s 18-class taxonomy, but
over 52% of objects lack this data, and many are assigned
multiple overlapping categories.

o Tags: The vocabulary is large (167K+ unique tags) but
noisy; many are tool-related (e.g., ‘blender’, ‘3d’) and
over a third of objects have no tags.

o Description: Often missing or filled with irrelevant tech-
nical notes (e.g., ‘Prob Threshold: 0.5’) or meaningless
sequences (e.g., ‘12562).

Due to their sparsity, noise, and inconsistency, these fields

are ill-suited for direct use in retrieval tasks—underscoring the
need for automated and scalable attribute extraction.

B. Testbed Construction for Attribute Extraction

To support attribute-level 3D retrieval, we construct a struc-
tured testbed by organizing the objects according to Sketch-
fab’s 18-category taxonomy. This enables category-aware re-
trieval and facilitates the extraction of representative attributes
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Fig. 1. Pipeline for object-level attribute extraction and category-level
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for each semantic class. Compared to object-level attributes,
category-level aggregation produces more robust profiles by
reducing noise and capturing generalizable patterns. These
profiles serve as interpretable targets for semantic retrieval.

To provide the necessary visual and textual resources
for attribute extraction, we incorporate the ULIP-Objaverse
Triplets dataset [6] released by ULIP-2, which aligns each 3D
object with multiple rendered views and corresponding natural
language captions. This multimodal resource complements the
native metadata and serves as the primary source for extracting
object attributes.

Each object in the triplets dataset is represented by:

¢ a3D point cloud (available at multiple sampling densities:
2K, 8K, 10K),

o 12 rendered images from uniformly spaced viewpoints
(30° intervals), totaling 9.58M images,

o and 10 generated descriptions per image using BLIP-2-
opt6.7B, resulting in over 95.8M caption candidates.

We assess the suitability of the generated descriptions for
attribute extraction. Due to uniform spherical rendering, key
features are occasionally occluded, resulting in inaccurate or
generic captions. Moreover, a domain gap between real images
(used to train BLIP-2) and synthetic Objaverse renderings
further degrades quality. To address this, we follow [6] and
apply CLIP-ViT-Large [1] to select the most relevant caption
per view based on image—text similarity.

While imperfect, the filtered descriptions offer significantly
richer semantic content than the original metadata, capturing
important object characteristics like shape, material, and struc-
ture. Our final testbed comprises 3D objects in 18 categories,
each with 12 rendered images and 12 high-confidence captions
(one per view), supporting our attribute extraction and retrieval
experiments.

III. PROPOSED SYSTEM

Our system enhances 3D content retrieval by pre-extracting
interpretable attributes from natural language descriptions of
3D objects. Unlike conventional embedding-only methods, it
enables the retrieval to be guided by explicit attribute key-
words. The framework consists of three stages: (1) object-level
attribute extraction, (2) category-level attribute aggregation,
and (3) attribute-based retrieval, with the first two stages
illustrated in Fig. 1.
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Fig. 2. Category-level attributes for the fashion-style category. (a) Raw
frequency-based aggregation of object-level general attributes. (b) Refined
general attributes and (c) refined adjective attributes, visualized as word clouds
after removing non-informative and generic terms.

A. Object-Level Attribute Extraction

We extract attributes from the 12 natural language de-
scriptions per object, which are generated from multi-view
renderings. After evaluating several NLP libraries (RAKE,
YAKE, Textacy, and spaCy), we adopt spaCy [8] for its robust
part-of-speech (POS) tagging, enabling fine-grained control
over the types of attributes retrieved.

We identify two complementary types of attributes:

o General attributes (e.g., ‘wheels’, ‘wood’, ‘backrest’) -
parts or materials of objects, primarily extracted by noun
phrases.

o Adjective attributes (e.g., ‘cushioned’, ‘rounded’,
fortable’) - perceptual or stylistic descriptors.

‘com-

Each description is syntactically parsed to extract relevant
patterns (for example, adjective-noun pairs), resulting in a
candidate set of attributes per object. To ensure consistency,
all attributes are lowercased, deduplicated, and normalized in
all views.

For general attributes, we apply lemmatization and remove
articles (e.g., ‘a’, ‘an’, ‘the’) to unify variants like ‘a shoe’, ‘the
shoe’ and shoes into the canonical form ‘shoe’. This normal-
ization mitigates duplication due to morphological variation.
In contrast, lemmatization is avoided for adjective attributes,
where semantic drift can occur, for example, ‘left’ becoming
‘leave’ or ‘colored’ reduced to ‘color’. Thus, adjective at-
tributes are preserved in their original surface form to maintain
semantic fidelity.

The resulting structured and normalized attribute set forms a
robust foundation for category-level aggregation and attribute-
based retrieval in subsequent stages.
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Fig. 3. Attribute-based retrieval interface and example results. (a) The user selects a category (e.g., furniture-home). (b) Based on the selected category, a
curated list of general and adjective attributes is displayed; the user selects ‘table’ (object type), ‘wooden’ (material), and ‘rectangular’ (shape). (c) The system

retrieves and ranks 3D objects that match the selected attributes.

B. Category-Level Attribute Aggregation

To build interpretable and representative profiles for each
category, we aggregate object-level attributes across the 18
Sketchfab taxonomy classes. For each category, we collect
attributes from its constituent objects and compute their fre-
quencies, as shown in Fig. 2(a).

This reveals both informative and uninformative patterns.
While attributes like ‘shoe’, ‘ring’, and ‘woman’ meaningfully
represent the fashion-style category, we also observe frequent
generic or dataset-specific terms such as ‘3d model’, ‘object’,
or ‘digital’, which provide little discriminative value. Addition-
ally, rendering biases introduce visual context terms like ‘gray
background’ or ‘white object’, unrelated to object semantics.

To address this, we apply filtering to remove generic or
non-informative terms. The resulting cleaned attribute profiles
better reflect category-specific characteristics and improve se-
mantic clarity. Fig. 2(b,c) shows refined general and adjective
attributes for the fashion-style category, visualized as word
clouds.

These category-level profiles are more robust than raw
object-level attributes, offering a generalizable and inter-
pretable foundation for downstream attribute-based retrieval.

C. Attribute-Based Retrieval

This stage enables interpretable and user-guided 3D content
retrieval using semantic attributes. Unlike conventional meth-
ods that rely solely on latent embeddings, our approach uses
explicit attributes that were extracted and aggregated in the
previous stages. We implement two retrieval prototypes: (1)
an attribute-only interface, and (2) a hybrid system combining
embedding similarity with attribute constraints.

Both share a common matching logic. For each object,
we reference the object-level attributes extracted in Section
III-A to determine relevance. A match is declared if the object

contains attributes that satisfy the user-selected query terms.
Based on empirical observations, we find that relying on
adjective-only terms (e.g., ‘round’) often leads to ambiguous
or irrelevant results. To improve precision, we define matching
in two configurations:
o General-only match: where matching is based solely on
general (noun) attributes (e.g., ‘table’).
o Adjective + general match: where matching requires co-
occurrence of adjective—noun pairs (e.g., ‘round table’).
1) Matching Score Metrics: Given a query attribute set )
and object attributes A,, we define:

a) Attribute Match Count (AMC): The number of at-
tributes in A, that contain or match each selected query
attribute as a substring. This count is computed separately for
general and adjective—general combinations.

b) Attribute Match Ratio (AMR): 1t is defined as:

AMR = Na,m/Na,, (D

where N4, is the total number of attributes in A, and N4 .,
is the number of matched attributes in A,. This measures the
proportion of the object’s attributes that are relevant to the
query.

c) Attribute Satisfaction Rate (ASR): This metric mea-
sures how completely the object satisfies the user’s intent. It

is defined as:
ASR = Ng.m/Nq, 2

where Ng is the total number of Q and Ng ,, is the number
of matched attributes in @. It reflects the proportion of user-
selected attributes that are present in the object’s attribute set.
The value ranges from O to 1, corresponding to no (0/Ng)
to full (Ng/Ng) satisfaction for a query with Ny selected
attributes.

Each metric is calculated for both general and adjective
+ general attribute types, resulting in six scores per object.
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Fig. 4. Comparison of retrieval results between feature embedding—based retrieval (left, red border) and attribute-only retrieval (right, blue border). (a) Results

for the query ‘castle’. (b) Results for the query ‘pokemon’.

Ranking is determined via a priority cascade: first by ASR
(adjective + general), then ASR (general), followed by AMC
and AMR as tie-breakers.

This multi-metric strategy prioritizes semantically rich and
specific matches (e.g., ‘round wooden table’) over generic or
partial matches, improving both relevance and interoperability.

2) Attribute-Only Retrieval Prototype: This prototype en-
ables category-aware, attribute-based retrieval without em-
beddings. Users select a category (e.g., furniture-home) and
then choose attributes (e.g., ‘wooden’, ‘rectangular’, ‘table’)
from a curated list derived from category-level profiles (Sec-
tion III-B). The system compares each object’s attributes
(Section III-A) to the query and ranks results using the
AMC/AMR/ASR metrics. As shown in Fig. 3, this allows
intuitive, interpretable search by attribute combinations.

3) Feature-Attribute Hybrid Prototype: This hybrid system
integrates visual-language embeddings with attribute filtering.
Users provide a multimodal query (text, image, or 3D), which
is encoded via a pretrained model (e.g., OpenShape [5] or
ULIP [4]). Top-N results are retrieved by embedding simi-
larity. Unlike the static lists in the attribute-only system, the
hybrid interface dynamically extracts dominant attributes from
the top-N results and surfaces them as filters. Users refine
results by selecting preferred attributes, which triggers re-
ranking using the same attribute match metrics (AMC, AMR,
ASR). Final scores are computed by combining embedding
similarity and attribute alignment.

This hybrid pipeline offers several advantages:

o It enables users to refine results without re-running

expensive embedding computations or repeating feature
similarity searches.

« It provides semantic interpretability through visible and
controllable attribute filters.

« It supports exploratory browsing by surfacing meaning-
ful attribute dimensions—such as material, shape, or
style—that are often entangled or latent in embedding
space but are clearly exposed through language-aligned
attributes.

Together, these prototypes demonstrate flexibility across re-
trieval workflows—whether driven by interpretable attribute
selection or guided by multimodal queries.

IV. EXPERIMENTAL RESULTS

We qualitatively evaluate our retrieval framework using the
structured testbed from Objaverse 1.0 (Section II-B), testing
both the attribute-only and hybrid prototypes on selected cat-
egories. Due to the absence of ground-truth relevance labels,
we assess results via visual comparison, focusing on semantic
coherence and alignment with user intent.

A. Attribute-Only Retrieval: Comparison with Feature-Based
Methods

We begin by evaluating the attribute-only prototype, where
users issue queries by selecting semantic attributes from cu-
rated category-level sets—without providing any visual or tex-
tual embeddings. We compare the results against OpenShape’s
embedding-based pipeline [5], which encodes natural language
queries (e.g., ‘castle’) into feature vectors and retrieves similar
3D objects using cosine similarity in a shared feature space.

As shown in Fig. 4, the feature-based method retrieves only
a few relevant items, whereas the attribute-based method yields
results that are more semantically consistent and visually
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Fig. 5. Showcases of hybrid retrieval in three scenarios: (a) Attribute-
Guided Exploration of Subcategories (b) Intent-Specific Refinement (c) Noise
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coherent across the top-ranked items. For instance, in the
‘castle’ query, attribute-based retrieval predominantly returns
medieval-style buildings, while the feature-based method in-
cludes several off-topic or weakly related items (e.g., ‘can-
dles’, ‘living rooms’) among the Top-20 results. Overall,
feature-based methods are effective at capturing broad similar-
ity, but tend to include semantically off-topic results in lower
ranks. In contrast, attribute-based retrieval leverages explicit,
interpretable criteria to yield more focused and user-aligned
results. This distinction is particularly valuable in exploratory
or fine-grained search scenarios.

B. Feature—Attribute Hybrid Retrieval: Use Cases

We evaluate the hybrid prototype through three representa-
tive use cases:

1) Attribute-Guided Exploration of Subcategories: In this
scenario, the user queries ‘hat’ using a reference image or
text input and receives a diverse set of top-N results based
on embedding similarity. The system analyzes these results
and surfaces frequent attributes—such as baseball, wizard, or
cowboy—as suggested filters. By selecting one or more of
these attributes, the user can guide the search toward specific
subtypes of interest (e.g., ‘baseball cap’), as illustrated in
Fig. 5(a).

2) Intent-Specific Refinement: The user issues a query for
‘girl’ within the characters—creatures category. As shown in
Fig. 5(b), the initial embedding-based retrieval returns mostly
clothing items—such as dresses, shirts, and costumes—due
to ambiguity in both the query term and the embedding
space. However, given the context of the characters—creatures
category, the user is likely seeking girl characters rather
than garments. To refine the results, the user selects relevant
semantic attributes—‘girl’, ‘character’, and ‘female’—from
a dynamically suggested list derived from the top-ranked
candidates. The system then re-ranks the results using the
hybrid attribute-matching logic, yielding more appropriate 3D
models such as anime-style avatars, humanoid characters, and
stylized girl figures. This example illustrates how the hybrid
system enables intent disambiguation and targeted refinement,
allowing users to steer results toward their intended targets
without repeating computationally expensive embedding-based
searches.

3) Noise Reduction via Attribute-Based Reranking: In this
case, we demonstrate how the hybrid system filters out noisy
or loosely related results returned by the initial embedding-
based retrieval. As shown in Fig. 5(c), the user begins with
a feature-based query for ‘dragon’, which yields a variety of
items—including other animals or fantasy accessories—due
to the broad semantics captured by the embedding space. To
improve relevance, the user activates the ‘dragon’ attribute in
the refinement interface. This filters and re-ranks the Top-K
results based on semantic alignment with the selected attribute.
The updated ranking promotes dragon-like 3D models with
stronger visual and conceptual alignment (e.g., flying dragon
characters, statues), while demoting unrelated items. This
example illustrates how the hybrid system supports lightweight
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semantic filtering without re-embedding or recomputing sim-
ilarity scores, enabling interpretable and user-directed refine-
ment of noisy retrieval results.

These experiments highlight the complementary strengths
of both prototypes: the attribute-only system enables inter-
pretable, category-aware retrieval without embeddings, while
the hybrid system allows rich multimodal queries followed by
efficient, transparent refinement. Together, they demonstrate
the flexibility and effectiveness of our framework across
diverse 3D content retrieval workflows.

V. CONCLUSION

We present a retrieval framework that enhances 3D ob-
ject search by leveraging interpretable, attribute-based rea-
soning. Rather than relying solely on latent features, we
extract human-aligned attributes—such as shape, material, and
style—from textual descriptions of 3D objects.

Our system supports two retrieval modes: an attribute-
only prototype enabling category-aware search without em-
beddings, and a hybrid prototype that combines multimodal
queries with dynamic attribute refinement. Both operate on a
shared testbed derived from Objaverse using filtered ULIP-2
captions for attribute extraction.

Qualitative experiments show that attribute-guided search
improves semantic consistency, precision, and user alignment
compared to feature-only methods. The hybrid model further
enables intent clarification and noise reduction without the cost
of repeated embedding computation.

Future directions include scaling to larger datasets, integrat-
ing user feedback loops, and exploring fine-grained attribute
learning with supervision or interactive labeling. Ultimately,
our goal is to make 3D content retrieval more transparent,
interpretable, and semantically controllable.
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