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Abstract—The increasing use of AI-powered tools for smart
contract security audits presents a critical challenge: ensuring the
integrity and provenance of audit reports. Traditional methods
lack cryptographic guarantees linking audit outputs to specific
AI models and source code, creating vulnerabilities to tampering
and misattribution. To address this, we propose ProvAuditChain,
a gas-efficient, hybrid on-chain/off-chain framework that records
immutable provenance of AI-driven audit reports on Layer 2
blockchain networks. ProvAuditChain utilizes lightweight smart
contracts to securely anchor cryptographically signed audit
report hashes on-chain, while storing the complete reports on
decentralized IPFS storage. We deploy the system on the Arbi-
trum Sepolia testnet and benchmark gas consumption, latency,
and throughput across 600 audit cycles. Our results demonstrate
a stable average gas cost of approximately 173,000 per audit,
equivalent to roughly $0.05 USD, alongside a throughput of
nearly six audits per minute. These findings confirm the prac-
tical viability of ProvAuditChain for integration into automated
CI/CD pipelines, providing a scalable foundation for trustworthy
AI accountability in decentralized ecosystems.

Index Terms—AI Audits, Blockchain, Decentralized storage,
Gas efficiency, Layer 2, Provenance, Smart contract, Verifiable
computing

I. INTRODUCTION

The rapid growth of decentralized applications (dApps)
has driven an unprecedented rise in the deployment of smart
contracts, making blockchain ecosystems increasingly reliant
on the correctness and security of these contracts [1]–[3].
However, traditional security auditing methods, which depend
on manual expert review, cannot keep pace with the scale and
speed of modern Web3 development [4]–[7]. This mismatch
has created a critical bottleneck in the software development
lifecycle, increasing the risk of deploying vulnerable contracts
and undermining trust in the ecosystem [8]–[10].

To address the scalability challenge, AI-powered tools have
emerged to automate smart contract security audits, offering
faster and more consistent vulnerability detection [5], [6],
[11]–[13]. Despite their promise, these AI-generated audit re-
ports introduce a new trust gap: the provenance and integrity of
the audit outputs are difficult to verify. Without cryptographic
guarantees linking the audit report to the specific AI model
and source code, stakeholders remain vulnerable to tampering

or misrepresentation, limiting the adoption of fully automated
security workflows.

Ensuring the verifiable provenance of AI-driven audit re-
ports requires establishing a cryptographic link between the
source code, the AI model version used for auditing, and
the final audit output. We refer to this challenge as the
audit provenance problem [14], which has seen little at-
tention from traditional systems and research in the area
of smart contract auditing. To close this gap, we propose
ProvAuditChain, a hybrid on-chain/off-chain framework that
guarantees the immutable and tamper-evident recording of
audit provenance using gas-efficient smart contracts deployed
on Layer 2 blockchain networks.

This paper makes three primary contributions. First, we
design and implement ProvAuditChain, a modular and gas-
efficient architecture that leverages an event-driven pattern
and decentralized storage to minimize on-chain costs. Sec-
ond, we provide the first public empirical benchmark of gas
consumption, latency, and throughput for on-chain provenance
recording of AI audit reports on the Arbitrum Sepolia testnet.
Third, we discuss practical implications and optimizations for
integrating ProvAuditChain into automated CI/CD pipelines,
demonstrating its readiness for real-world adoption. The re-
mainder of this paper is organized as follows: Section 2
reviews related work; Section 3 describes the ProvAuditChain
framework; Section 4 outlines our evaluation methodology;
Section 5 presents results; Section 6 discusses findings; and
Section 7 concludes the paper.

II. RELATED WORKS

A variety of AI-powered smart contract auditing tools have
been developed to automate vulnerability detection, including
Vulhunter [15], xFuzz [16], and MANDO-HGT [17], as
well as recent approaches leveraging large language models
(LLMs) [11], [13], [18]–[21]to generate security assessments.
While these tools improve scalability and speed compared
to manual reviews [6], they lack mechanisms to verify the
authenticity and integrity of their outputs cryptographically.
Current research on decentralized, tamper-evident audit trails
demonstrates that cryptographic signing and blockchain-based
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logging can provide such guarantees for automated sys-
tems [22]. Still, these approaches have not been integrated into
mainstream AI-powered smart contract auditing tools. This
limitation creates a risk that audit reports can be altered or
misattributed, undermining confidence in their findings.

Blockchain technology has been widely employed to pro-
vide immutable provenance for assets such as supply chains
and digital content, ensuring transparent and tamper-evident
histories [23]. However, most existing provenance solutions
focus on tracking physical goods or data lineage rather than the
outputs of AI systems. The challenge of securely recording AI-
generated audit reports on-chain remains largely unexplored,
particularly in terms of minimizing gas costs and maintaining
scalability on Layer 2 networks.

Prior efforts to bring audit information on-chain have
typically focused on human-generated reports, bug bounty
submissions, or upgrade governance logs, often using central-
ized oracles or off-chain attestations. These approaches fall
short in offering full cryptographic traceability of AI audit
pipelines and are rarely optimized for low-cost operation on
Layer 2 environments. In contrast, ProvAuditChain introduces
a purpose-built design that natively supports AI-generated
audits, leverages decentralized storage, and emphasizes gas
efficiency, bridging a gap left by existing solutions.

A key requirement for trustworthy AI audits is the ability
to attribute the output to a specific AI model version under
controlled conditions. Research on verifiable machine learning
emphasizes techniques such as model fingerprinting, determin-
istic inference, and digital signatures over model checkpoints
to support auditability [24]. However, these practices are not
widely adopted in existing smart contract auditing pipelines,
which typically treat the AI tool as a black box. Without
a standardized way to bind audit results to specific models
and inputs, claims of correctness or reproducibility remain
unverifiable.

Advancements in verifiable computing and decentralized
identity offer promising tools for establishing trust in AI-
driven processes [25]. Protocols such as verifiable credentials,
zero-knowledge proofs (ZKPs), and decentralized identifiers
(DIDs) enable selective disclosure, reproducibility, and attri-
bution without relying on centralized authorities [25], [26].
While these concepts have been explored in areas like identity
management and privacy-preserving computation, they have
yet to be applied comprehensively to the domain of smart
contract audits. ProvAuditChain represents an early integration
of these principles, specifically model-level authentication and
hash-based report verification, into a coherent, developer-
facing framework.

III. THE PROVAUDITCHAIN FRAMEWORK

ProvAuditChain adopts a hybrid on-chain/off-chain archi-
tecture designed to maximize verifiability while minimizing
on-chain gas consumption. The core design principle is to
perform computationally expensive and storage-intensive tasks
off-chain, while anchoring essential integrity and provenance
metadata on-chain using lightweight, modular smart contracts.

This separation of concerns enables trust-minimized audit
recording at low cost, while maintaining strong guarantees of
tamper resistance and traceability.

Fig. 1. System Architecture

Algorithm 1 ModelRegistry Contract: Register Model
1: procedure REGISTERMODEL(metadataHash)
2: require(caller == owner)
3: modelID ← keccak256(metadataHash, timestamp,

caller)
4: models[modelID] ← (metadataHash, active = true)
5: emit ModelRegistered(modelID, metadataHash)
6: end procedure

The on-chain component of ProvAuditChain consists of
three smart contracts: ModelRegistry, AuditManager, and Au-
ditLedger. The ModelRegistry serves as an allowlist of autho-
rized AI auditing models, each associated with a signing public
key. This enables on-chain signature verification of audit
outputs. The AuditManager is a minimal user-facing contract
that receives audit requests and emits an AuditRequested event
to trigger the off-chain process. The AuditLedger functions as
an append-only registry of completed audits, storing signed
hashes of audit reports and verifying their authenticity against
the ModelRegistry.

Algorithm 2 AuditManager Contract: Request Audit
1: procedure REQUESTAUDIT(contractAddress, modelID)
2: require(ModelRegistry.models[modelID].active)
3: emit AuditRequested(contractAddress, modelID,

msg.sender)
4: end procedure

The audit workflow begins when a user submits a smart
contract address and a selected AI model identifier to the
AuditManager, which emits an AuditRequested event. This
event is picked up by an off-chain auditor service that performs
the analysis using the specified model. Upon completion, the
auditor stores the full audit report on IPFS and generates a
cryptographic signature over the IPFS hash using the model’s
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registered private key. It then submits the signed hash to
the AuditLedger, which verifies the signature against the
corresponding entry in the ModelRegistry before permanently
recording the audit result.

Algorithm 3 AuditLedger Contract: Record Verified Audit
1: procedure RECORDAUDIT(modelID, ipfsHash, signature)
2: valid ← MODELREG-

ISTRY.VERIFYSIGNATURE(modelID, ipfsHash, signature)
3: if valid then
4: audits.push((modelID, ipfsHash, signature, times-

tamp))
5: emit AuditRecorded(modelID, ipfsHash)
6: else
7: revert(“Invalid Signature”)
8: end if
9: end procedure

By cleanly separating responsibilities between the smart
contracts and the off-chain audit engine, ProvAuditChain
achieves a balance between trust, efficiency, and developer
usability. The system is model-agnostic, allowing multiple AI
tools to coexist under a single framework, and is compatible
with any environment that supports Ethereum Virtual Machine
(EVM) smart contracts. Its event-driven design facilitates
easy integration with CI/CD pipelines, while the minimal
gas footprint makes it suitable for routine use in resource-
constrained L2 environments. This modular and extensible
architecture lays a practical foundation for trust-minimized,
verifiable AI auditing in decentralized ecosystems. Figure 1
gives an overview of the framework.

A. Implementation and Evaluation Methodology.

To evaluate the practical feasibility of ProvAuditChain, we
deployed the system’s smart contracts to the Arbitrum Sepolia
testnet. This public Ethereum Layer 2 environment supports
realistic gas modeling and throughput measurements. Our
objective was to assess gas efficiency, latency, and scalability
under continuous usage conditions representative of integra-
tion in an automated development pipeline. The evaluation
focused on measuring the gas consumed by each contract
function and the time taken to complete an entire audit cycle,
from request submission to final on-chain recording.

We developed a custom benchmarking script in Node.js to
simulate sustained audit activity and gather performance met-
rics. The script emulated 600 audit cycles at a constant rate of
20 requests per minute, modeling a realistic CI/CD deployment
scenario. For each cycle, it triggered the requestAudit function
on the AuditManager, awaited off-chain audit generation and
IPFS upload, and then submitted the signed hash to the
AuditLedger using the recordAudit function. Timestamps were
logged at each stage to measure end-to-end cycle time, while
transaction receipts were analyzed to extract gas consumption
data.

Our evaluation captured three core metrics: gas consump-
tion, latency, and throughput. Gas consumption was measured

separately for the requestAudit and recordAudit functions to
identify the cost of initiating and completing an audit. Latency
was defined as the total time from the initial user request
to the successful recording of the signed audit hash on-
chain. Throughput was calculated as the number of complete
audit cycles processed per minute under the given workload.
Together, these metrics provide a comprehensive view of the
system’s economic and operational feasibility for integration
into real-world development workflows.

The smart contracts were implemented in Solidity using
the Hardhat development framework and deployed to the
Arbitrum Sepolia testnet via its public RPC endpoint. Trans-
actions were submitted from a MetaMask wallet connected to
the testnet, enabling consistent gas benchmarking across all
operations. The off-chain auditor service ran on a consumer-
grade machine (quad-core CPU, 16 GB RAM), emulating a
lightweight CI/CD integration scenario. While the evaluation
was conducted under controlled network conditions, it does
not account for concurrency, node instability, or adversarial
interference. These aspects remain open for future exploration
as part of a broader stress-testing strategy.

IV. RESULTS AND DISCUSSION

Our benchmarking of ProvAuditChain on the Arbitrum Se-
polia testnet, spanning 600 audit cycles, confirms its efficiency
and stability for real-world applications. The system demon-
strates a predictable and low-cost performance profile, making
it highly suitable for integration into automated development
pipelines. Table I provides a consolidated summary of the key
performance indicators, which we analyze in detail throughout
this section.

TABLE I
ARBITRUM SEPOLIA BENCHMARK METRICS

Metric Value

Avg. Gas per Request 32,796 units
Avg. Gas per Record 140,109 units
Total Gas per Audit ∼173,000 units
Avg. Cycle Time 10.15 s
Throughput 5.9 audits/min

The metrics in Table I underscore the core value proposition
of ProvAuditChain: delivering strong on-chain provenance
guarantees at a trivial marginal cost. A total gas consumption
of approximately 173,000 units per audit cycle on a Layer 2
network, such as Arbitrum, is exceptionally low, confirming
the effectiveness of our hybrid architecture. This efficiency is
paramount for adoption, as it allows development teams to
log audit provenance for every code change or model update
without incurring prohibitive costs. The throughput of nearly
six audits per minute further demonstrates that the system can
comfortably handle the demands of a typical, active CI/CD
pipeline without creating a bottleneck.

Figure 2 illustrates the gas consumption for the two main
on-chain interactions. The ‘requestAudit’ function is excep-
tionally lightweight, consuming an average of only 32,796
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Fig. 2. Breakdown of average gas consumption for the two primary on-chain
functions: ‘requestAudit’ and ‘recordAudit’.

gas. This is expected, as its sole purpose is to emit an
event—a highly gas-efficient operation for signaling off-chain
systems. In contrast, the ‘recordAudit’ function requires an
average of 140,109 gas. This higher cost is attributable to
its more intensive workload, which includes cryptographic
signature verification (‘ecrecover’) and, most significantly,
a state-changing operation that writes the audit record to
blockchain storage. Although more expensive than the other,
this gas expenditure remains modest for an L2 transaction.
It validates our design choice to store only a lightweight
hash on-chain, while delegating the full report to IPFS. This
architectural decision is fundamental to the system’s economic
viability.

Fig. 3. Estimated transaction cost in USD, based on a representative L2 gas
price of 0.1 Gwei and an ETH price of $3,000.

The practical economic impact is visualized in Figure 3.
At a total cost of approximately $0.05 USD per audit,
ProvAuditChain transforms provenance from a costly, occa-
sional luxury into a routine, low-friction component of the
development lifecycle. This affordability enables teams to

adopt a “provenance-as-code” paradigm, where every commit
in a repository can be automatically audited and its result
immutably recorded without budgetary concerns. This capa-
bility represents a significant step forward from traditional,
expensive manual audits, providing a level of continuous,
granular assurance that was previously unattainable.

Fig. 4. End-to-end latency for a complete audit cycle, from initial request to
the final on-chain record.

As shown in Figure 4, the average end-to-end cycle time
was 10.15 seconds. This latency encompasses L2 transaction
confirmation time for both the request and record transactions,
as well as the off-chain processing time (AI model execution
and IPFS upload). For an asynchronous process within a
CI/CD pipeline, this latency is well within acceptable limits.
Developers typically do not require synchronous feedback, and
a 10-second delay for a permanent, cryptographic record of an
audit is a negligible trade-off. While the current throughput of
6 audits/minute is sufficient for many use cases, it could be fur-
ther optimized for high-frequency environments by batching
multiple audit records into a single ‘recordAudit‘ transaction.
Such an enhancement could dramatically increase throughput
while further reducing the amortized gas cost per audit.

A. Security model, auditor compromise, and mitigations

In our prototype, the AI Auditor signs the report’s IPFS
CID; contracts verify the signature against the model’s regis-
tered verifier and active status, and reject duplicates for idem-
potent retries. As potential mitigations to reduce reliance on a
single key, deployments may use an EIP-1271 multisig verifier,
adopt epoch-based key rotation with a revocation threshold,
and run the signer in a trusted execution environment with
optional attestation in the metadata.

B. Operational conditions: congestion, instability, and adver-
saries

Under high L2 load, inclusion latency and fees rise, increas-
ing time-to-confirmation and audit cost; adversarial flooding or
soft censorship primarily degrades latency rather than integrity.
Our client logic is resilient via idempotent submission. As
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potential operational mitigations, deployments can set adaptive
fee caps, batch multiple CIDs when permissible, use multi-
provider failover with bounded retries and backoff, and restrict
submissions to the registered verifier with rate caps.

C. Assumptions and defended surface

We assume standard cryptographic primitives (ECDSA,
keccak256), collision-resistant IPFS addressing for the chosen
CID format, eventual L1 finality for the rollup, audited contract
deployments, and loosely synchronized clocks for worker
timeouts. Under these assumptions, integrity is enforced on-
chain through verifier checks, model-activation status, and
duplicate rejection, while liveness and robustness to network
variance are provided off-chain by idempotent retries, failover,
and fee control.

V. CONCLUSION

ProvAuditChain presents a novel, gas-efficient framework
for recording the provenance of AI-driven smart contract
audits on public Layer 2 networks. Our modular architecture
leverages event-driven on-chain contracts combined with off-
chain auditing and decentralized storage to deliver tamper-
evident, verifiable audit trails at a minimal cost of approxi-
mately $0.05 per audit. Evaluations on the Arbitrum Sepo-
lia testnet demonstrate that ProvAuditChain achieves stable
gas usage, acceptable latency, and throughput suitable for
integration into automated CI/CD workflows. This work lays
foundational infrastructure for trustworthy AI accountability
in decentralized development environments, paving the way
for further innovations in verifiable AI and secure blockchain
applications.
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