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Abstract—Automated quality inspection in real-world factories
must contend with complex backgrounds that can obscure subtle
product defects. We investigate whether explicitly removing
background regions benefits multimodal anomaly detection on
RGB + 3D point-cloud data. Focusing on washing-drum assembly,
we isolate the drum via 3D spatial filtering to create Foreground-
Only inputs and compare them with the unprocessed Original
scenes. Three state-of-the-art unsupervised models, Asymmetric
Student–Teacher (AST) [2], Shape-Guided Dual-Memory [3], and
3DSR [4], are trained solely on normal samples and evaluated
on a balanced test set. Image-level AUROC rises consistently for
all models when using foreground data: from 0.973 to 0.991 for
3DSR, 0.983 to 1.000 for AST, and 0.949 to 0.999 for Shape-
Guided, yielding a mean gain of approximately 3 percentage
and a perfect score for AST. Qualitative inspection shows that
background removal eliminates false positives and concentrates
anomaly heatmaps on genuine defects. These results demonstrate
that foreground extraction is a simple yet powerful preprocessing
step for RGB + 3D anomaly detection in cluttered industrial
environments and should be considered a standard component
of deployment pipelines.

Index Terms—Anomaly detection, Machine learning, Machine
vision, Industrial inspection, 3D point clouds, Unsupervised
learning

I. INTRODUCTION

Unsupervised anomaly detection has become vital in indus-
trial quality inspection, where only normal data are available
for training, and the goal is to detect novel defects or anomalies
during operation. [6]–[9] Traditional AD benchmarks like
MVTec AD focus on 2D images of products, and newer
datasets such as MVTec 3D AD [1] extend this to RGB-
D / 3D data for detecting geometric and visual anomalies.
In these benchmarks, each object is typically captured in
isolation against a simple planar background [2], making it
straightforward to segment the object from the background. In
practice, however, industrial scenes are often more complex:
products may be embedded in cluttered environments with
rails, fixtures, and other objects in view [13], [14] . This
background clutter can confound anomaly detection models by
introducing irrelevant features and variations. Recent studies
have suggested that removing background regions allows mod-
els to focus on the essential object features, thereby improving

detection performance. In this paper, we investigate the im-
pact of explicit foreground extraction on RGB+3D anomaly
detection performance in a real-world industrial setting. We
consider an assembly scenario of washing machine drums,
where anomalies or defects in the drum must be detected
from combined color and 3D data [10], [11] . We compare
model performance with and without a preprocessing step that
removes background data, using multiple state-of-the-art AD
models. Our findings show that focusing on the foreground
object yields higher detection accuracy, even reaching perfect
detection in one case, highlighting the importance of robust
foreground isolation in industrial anomaly detection.

II. RELATED WORKS

A. Industrial Anomaly Detection Datasets

The MVTec Anomaly Detection (MVTec AD) [5] dataset
introduced a standardized benchmark for unsupervised
anomaly detection on high resolution images of various objects
and textures. It contains 15 categories with only normal
samples in training and dozens of defect types in the test
set. Also, the MVTec 3D AD [1] dataset provides RGB-
3D point cloud scans for 10 object categories to facilitate
detection of 3D structural anomalies as well as visual defects.
In both datasets, the training set consists solely of normal
products and the test set includes both normal and anomalous
samples, with pixel or point level ground truth annotations for
defects. Notably, the objects in MVTec 3D AD are scanned
in isolation, which makes it easy to obtain a foreground
mask for the object. This is an important detail because it
means that models can be evaluated mostly on the object
itself without background interference. Many state-of-the-art
methods implicitly or explicitly take advantage of this. The
general expectation is that focusing on the object should
improve anomaly detection by eliminating the need to model
background regions that are not relevant to the defect.

B. RGB and 3D Anomaly Detection Methods

With the availability of RGB+3D point cloud sensors, recent
works have aimed to combine color and 3D geometry modal-
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Fig. 1. Example RGB captures from the washingdrum inspection dataset illustrating the effect of 3D foreground extraction. Each pair shows the Original
full scene and the corresponding Foreground-Only image. Columns 1–4 (left block) depict normal drums; Columns 5–8 (right block) depict anomalous drums.
Foreground extraction isolates the product surface and removes extensive, highly variable background clutter present in the assembly environment.

ities to detect subtle anomalies. The Asymmetric Student-
Teacher (AST) [2] model employs student–teacher networks
[12], [14] for anomaly detection. This model’s teacher network
produces embeddings for normal data, and a student network
is trained to imitate the teacher. Anomalies are detected when
the student fails to replicate the teacher’s output. Also this
model use a probabilistic normalizing flow as the teacher and
a standard feedforward CNN as the student, forcing a large
output divergence for anomalous inputs. Another approach
is to leverage memory networks or prototype features from
normal data named as Shape-Guided Dual-Memory method
[3] that trains two expert models: one modeling 3D shape
patterns and another modeling 2D appearance, both built from
anomaly-free samples. At test time, anomalies are localized
by comparing input features against these normal memories
in a shape-guided manner. This method achieved top per-
formance on MVTec 3D-AD, benefiting from per-point 3D
representations and the fusion of complementary RGB and
depth cues. The use of separate memories for geometry and
color allows detecting defects that manifest in shape as well as
those visible only in color. Recently, a method called 3DSR
(3D Surface Anomaly Detection via Depth Simulation) [4]
has recently been introduced. Their approach tackles the fact
that some surface anomalies are nearly invisible in RGB alone
by explicitly enhancing and utilizing depth information. They
develop a Depth-Aware Discrete Autoencoder (DADA) to
jointly encode RGB and depth data into a shared latent space,
and use simulated depth images to augment limited training
data. The 3DSR model achieved state-of-the-art accuracy on
the challenging MVTec 3D-AD benchmark, outperforming
previous methods in both detection accuracy and speed. This
highlights the benefit of incorporating geometric depth cues
for anomaly detection, as certain defects can be detected from

3D shape even when color appears normal.

III. METHOD

A. Dataset and Preprocessing

Our study is conducted on an industrial anomaly detection
task in a washing machine drum assembly line. The data
consist of paired RGB images and 3D point clouds captured by
an industrial 3D vision sensor observing the assembly process.
The goal is to detect abnormal situations or defects that can
occur during the drum assembly. Examples of anomalies in this
context might include deformed drums, misaligned compo-
nents, or foreign objects attached to the drum. A key challenge
in this real-world dataset is the complex environment: apart
from the washing drum (the target object of interest), the scene
includes a metal rail and various surrounding structures. This
means a substantial portion of each image/pointcloud is back-
ground or unrelated objects, unlike the simple backgrounds
in MVTec 3D-AD. To address this, we perform a foreground
extraction step to isolate the drum. Specifically, we leverage
prior knowledge of the drum’s position in the scene to filter
out points that belong to the background. All points outside the
drum’s region are removed. The result is a cropped point cloud
and image containing only the drum. This yields two versions
of the dataset: (1) Original (Full) – the raw RGB images and
3D data with background included, and (2) Foreground-Only
– the processed data where only the drum and its immediate
vicinity remain. Both versions carry the same anomaly labels.

B. Anomaly Detection Models

We evaluate three recent unsupervised anomaly detection
models that accept combined RGB and 3D inputs: AST,
Shape-Guided, and 3DSR. For each model, we use its pub-
lished architecture and recommended training procedure, with
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TABLE I
ANOMALY DETECTION ACCURACY (AUROC) FOR EACH MODEL, ON ORIGINAL DATA VERSUS FOREGROUND-ONLY DATA. HIGHER IS BETTER.

Model AUROC (Original) AUROC (Foreground-Only) ∆ Rel.%
3DSR [4] 0.9731 0.9910 +0.0179 +1.84
AST [2] 0.9827 1.0000 +0.0173 +1.76
Shape-Guided [3] 0.9490 0.9990 +0.0500 +5.27
Average 0.9683 0.9967 +0.0284 +2.9

the only difference being whether background removal is
applied to the input data.

• AST (Asymmetric Student–Teacher) – A normalizing-
flow teacher and a CNN student are trained on normal
data; anomalies are detected from the teacher–student
feature discrepancy. A 3D mask can be applied to ignore
non-object regions, so removing the background lets the
model focus exclusively on the drum.

• Shape-Guided Dual-Memory – Maintains two memory
banks: one for 3D shape features, one for RGB appear-
ance. At test time it flags points that diverge from either
memory. Eliminating background points prevents false
matches and sharpens defect localization on the drum
surface.

• 3DSR (Depth-Simulation Autoencoder) – Jointly en-
codes RGB and depth via a depth-aware discrete au-
toencoder, augmented by simulated depth maps. With
background removed, the network reconstructs only the
drum region, boosting sensitivity to subtle surface defects.

IV. RESULTS

I summarizes the anomaly detection results for the three
models on the washing drum test set, comparing the Original
vs Foreground-Only data. We report the image-level AUROC
(in fraction form) for each case.

All three models achieve higher AUROC when using only
the foreground data, confirming that removing the background
leads to better anomaly detection performance. On average,
the AUROC across the models improved from about 0.968
(96.8%) with the full scene to 0.997 (99.67%) with just the
foreground, an increase of roughly 2.9 percentage points.
The Shape-Guided model in particular showed a dramatic
jump, from 0.949 to 0.999, indicating that it struggled the
most with background clutter and benefited greatly from
focusing only on the object. The 3DSR and AST models were
already very accurate on the full data (97–98% AUROC), but
still saw meaningful improvements to around 99–100% with
foreground only input. Notably, the AST model reached an
AUROC of 1.000 (100%) when background was removed. It
means that model perfectly distinguished all defective samples
from all normal samples in our test. This suggests that, at
least for this dataset, the combination of AST’s student-teacher
framework with a clean foreground input allowed it to detect
every anomaly without a single mistake. In contrast, AST’s
AUROC was 0.9827 with the original data, implying a few
defects were missed or some normal parts of the background
were incorrectly flagged as anomalous. Eliminating the back-
ground resolved those issues.

Fig. 2. Distribution of log anomaly scores from the AST model for
normal (cyan) and defective (magenta) washing drum samples. Top: Model
trained and tested on Original full-scene data. Substantial overlap between
the two score distributions indicates uncertain discrimination and leads to
suboptimal image–level accuracy. Bottom: Same model configuration trained
and tested on Foreground Only data obtained via 3D ROI masking. The score
distributions separate cleanly, yielding near-perfect decision separability.

V. CONCLUSION

We have presented a comparative study on anomaly de-
tection using RGB and 3D point cloud data in an indus-
trial assembly context, examining the effect of foreground
extraction (background removal) on detection performance.
Using a washing drum assembly dataset with complex scene
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Fig. 3. AST anomaly localization on two defective washing drum samples (rows). Columns: (1) Original full-scene RGB input; (2) AST anomaly heatmap
for the Original input, showing diffuse and inaccurate prediction, background driven responses; (3) Foreground Only RGB obtained by 3D ROI masking; (4)
AST anomaly heatmap after foreground extraction, with responses concentrated on true defect regions and minimal background noise. Foreground isolation
sharpens localization and reduces false activations on rails and other clutter.

background, we showed that three different state-of-the-art AD
models all achieved superior results when the input was limited
to the target object, as opposed to the full scene. In particular,
isolating the drum and removing background clutter led to
an average improvement of around 3% in AUROC, and even
enabled one model (AST) to reach a perfect detection score on
our test set. These results empirically validate the intuition that
background regions can act as distractors or sources of false
alarms in anomaly detection. By eliminating these regions,
the models can focus exclusively on the product’s appearance
and shape, thereby more reliably identifying deviations caused
by true defects. This finding has practical significance for
deploying anomaly detection in real factories. It suggests that
incorporating a foreground segmentation or localization step
in the inspection pipeline can substantially boost the accuracy
of defect detection. In cases where the object’s location is
known or can be obtained, applying a region mask to analyze
only the object is highly beneficial. For future work, one
could explore automated methods to segment the object from
cluttered backgrounds such that the benefits of foreground-
focused anomaly detection can be realized without manual
intervention. Additionally, while our study focused on image-
level detection, an interesting extension would be to evaluate
the impact of background removal on pixel-level anomaly
localization performance, as one would expect cleaner seg-
mentation of defects when the models are not confused by
background noise. In conclusion, our research underscores
that a seemingly simple preprocessing step can yield outsized

gains in anomaly detection performance. As advanced models
continue to improve and combine multimodal inputs, ensuring
that these inputs are free of irrelevant content will remain
important. Especially in complex industrial environments, in-
telligent foreground extraction may be a necessary component
of a robust automated visual inspection system. By focusing
on products themselves, we can achieve more accurate and
trustworthy detection of anomalies, ultimately helping main-
tain high quality standards in manufacturing processes.
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