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Abstract— As software plays a critical role in the 
performance and security of modern weapon systems, 
integrating security engineering throughout the software 
development life cycle is becoming increasingly essential. This 
paper introduces AMVS, an automated framework that 
systematically maps responses to software vulnerabilities to 
international security standards. AMVS leverages ISO/IEC 
25023 for software quality, the Risk Management Framework 
(RMF) based on NIST SP 800-53 Rev. 5, and real-time 
CVE/CWE data to establish traceable and quantifiable security 
requirements from the design stage. The framework collects 
CVE data through web crawling, classifies them by CWE, and 
assigns severity-based weights to each vulnerability. It then 
automatically maps optimal security measures to corresponding 
ISO and RMF control items. These mappings are applied 
directly to system design documents, enabling developers to 
prioritize and implement security controls with minimal manual 
effort. A case study on the PX4 flight control platform 
demonstrates the effectiveness and scalability of the proposed 
framework. AMVS enhances the development of resilient and 
standards-compliant military software systems capable of 
proactively responding to emerging cyber threats. 

Keywords— Cyber-attacks, SDLC, weapon system, OSS, 
ISO/IEC 25023, RMF, Security measures, CVE, CWE, Drone 

I. INTRODUCTION 
As modern weapon systems rapidly evolve, embedded 

software has become essential for ensuring reliability, 
responsiveness, and mission success. Autonomous and highly 
connected platforms—such as military drones used for 
reconnaissance, surveillance, target acquisition, and precision 
strikes—are particularly vulnerable to cyberattacks that 
exploit software weaknesses. Real-world incidents, including 
the spoofing attack on the U.S. Q-drone, have demonstrated 
that software vulnerabilities can pose serious threats to 
national security [1,2].  

Addressing such challenges requires more than reactive 
patching; instead, a systematic and standards-based security 
methodology must be applied throughout the software 
lifecycle—including design, development, deployment, and 
maintenance. This approach entails defining security 
requirements during the design phase and ensuring their 
traceability through implementation and verification. 

To support this goal, this study leverages three core 
elements: (1) ISO/IEC 25023, an international standard for 
measuring software quality; (2) the U.S. Department of 
Defense's RMF; and (3) structured vulnerability data from 

public sources such as CVE and CWE. ISO/IEC 25023 
provides quantifiable quality metrics, RMF offers lifecycle-
integrated security controls for defense systems, and 
CVE/CWE enable proactive vulnerability tracking and 
classification. 

However, ISO/IEC 25023 does not specify detailed 
security control mechanisms for mission-critical systems, and 
RMF—though comprehensive—is complex and only partially 
disclosed. While CVE and CWE standardize vulnerability 
disclosure, they do not directly map to mitigation controls or 
design requirements. Although integrating these standards and 
datasets enables the systematic definition and traceability of 
security requirements from the design stage, the manual 
mapping process is time-consuming, error-prone, and 
inconsistent, especially as the volume of known 
vulnerabilities continues to grow. 

To address this issue, we propose an automated framework 
that collects the latest CVE data, classifies them into CWE 
categories, and assigns weighted scores based on severity and 
likelihood. Through this approach, developers can 
automatically associate prioritized ISO and RMF-based 
security controls with system design components. This 
enables the application of validated countermeasures for 
critical vulnerabilities while reducing the risk of omissions. 

This study validates the proposed framework using PX4, a 
widely adopted open-source flight control system for military 
drones. Through expert comparison and evaluations spanning 
the firmware, operating system, and application layers, we 
demonstrate the framework's scalability, objectivity, and 
practical effectiveness. By continuously updating its 
knowledge base and aligning with international standards, the 
framework contributes to the development of resilient and 
trustworthy software systems in defense environments. 

The remainder of this paper is structured as follows: 
Section II reviews international standards related to software 
quality and security for weapon systems, including ISO/IEC 
25023 and RMF. Section III presents the design and 
methodology of the proposed framework that integrates ISO 
and RMF controls. Section IV illustrates its applicability 
through a case study on PX4. Finally, Section V concludes the 
paper and outlines directions for future work. 

 

II. RELATED WORK AND BACKGROUND 
In general, verifying the quality of software in weapon 

systems remains limited for several reasons. First, when a 
weapon system is being developed for the first time, it is often 
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difficult to define user requirements clearly. Even when such 
requirements are defined, there is a lack of internationally 
recognized standards for measuring the quality of weapon 
system software. Furthermore, discrepancies between 
development phases can lead to inconsistencies where the 
deliverables fail to fully reflect the defined requirements. 

To address this, it is necessary to adopt a systematic 
approach to improving software quality from the early stages 
of weapon system development. The international standard 
ISO/IEC 25023, which provides quantitative metrics for 
software quality, offers a promising solution [3]. However, 
when applied in isolation, ISO/IEC 25023 has limitations in 
several key areas, including security threat management, 
dynamic threat response, supply chain security, security 
integration across development phases, and secure 
maintainability [4 -7]. 

Beyond software quality management, one of the most 
critical aspects of operating weapon systems is ensuring the 
integrity and trustworthiness of data processed within the 
system. In response to this need, the United States established 
the RMF in 2013 as a security evaluation standard [8]. The 
RMF includes control families—comprehensive sets of 
safeguards designed to satisfy security requirements. These 
controls are accompanied by supplemental guidance and 
control enhancements. Based on NIST SP 800-53 Rev. 5, the 
RMF consists of 20 control families and 1,013 individual 
control numbers [9]. By clearly defining security requirements, 
the RMF allows developers to incorporate security 
considerations from the earliest stages of system design and 
ensures consistent application of security controls across 
various components of complex weapon systems, thereby 
enhancing overall system security [10]. 

Previous studies on RMF have examined its application in 
weapon system software development and cybersecurity 
enhancement [11–13], and further research has explored 
improvements in RMF implementation procedures and 
evaluation methods [14,15]. However, when applying the 
RMF to weapon systems development outside the United 
States, several limitations arise. Although RMF is a publicly 
available framework based on NIST documentation, many of 
its components—such as details on classified operational 
environments, military encryption technologies, and specific 
threat models for weapon systems—are not publicly disclosed. 
This restricts its direct application as an international standard. 
Therefore, rather than fully adopting the RMF framework, 
selectively applying its relevant components to reinforce 
cybersecurity may be a more practical approach. 

Systematically addressing software vulnerabilities is 
essential to improving the reliability of weapon system 
software. While databases like CVE and CWE are valuable 
for identifying and categorizing known vulnerabilities, they 
do not provide explicit guidance on mitigation strategies or 
design-level solutions. As a result, developers are burdened 
with the responsibility of analyzing, fixing, and developing 
prevention strategies on their own. This manual and subjective 
process makes it difficult to objectively assess whether the 
resulting software meets required security quality standards, 
thereby increasing the likelihood of degraded quality and the 
emergence of additional vulnerabilities. 

To overcome these challenges, this study proposes the 
following: (1) automated vulnerability management, (2) 
automatic mapping of security countermeasures using 
ISO/IEC 25023 and RMF standards, and (3) support for 
efficient documentation throughout the software development 

process. Collectively, these contributions address the 
limitations of existing practices in this domain. 

 

III. AMVS DESIGN 
The overall process of the AMVS framework is depicted 

in Fig 1. When a software vulnerability is identified, the 
proposed system collects the latest CVE and CWE data, 
analyzes and classifies them by considering severity and 
weighted factors, and then utilizes a custom-developed LLM-
based engine to automatically map optimal mitigation 
strategies. This mapping is performed with reference to NIST 
and ISO security standards to ensure the most effective 
countermeasures. As a result, the framework provides 
developers with optimal vulnerability responses and 
automatically generates design documents, such as the SRS 
and SDD, that incorporate these requirements. 

 

 
Fig. 1. AMVS framework 

A. Vulnerability Collection and Classification 
The AMVS framework aims to reduce software 

vulnerabilities by providing developers with mitigation 
strategies based on the latest CVE data. It automatically 
collects and organizes vulnerability information from CVE 
records in the NVD. 
 

  
Fig. 2. CVEs extraction and their mapping to security measures and controls. 

The core architecture of the framework is illustrated in Fig 
2. First, the latest CVE data is obtained using the CVE-fixes 
database from the Secure IT project [16], which provides 
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normalized NVD data in SQLite format. Each entry includes 
the CVE ID, publication date, CVSS score, vulnerability 
description, and associated CWE identifier. Based on user-
defined criteria, CVEs are filtered and checked for the 
presence of CWE identifiers. If available, the CWE data is 
linked to the corresponding CVE record. 

The mapping process is performed in two stages. First, 
CWE entries are mapped to ISO/IEC 25023 security 
characteristics using a keyword-based approach. Predefined 
keywords are associated with each ISO security attribute, and 
their occurrence in CWE descriptions determines the mapping. 
Second, CWE entries are linked to security controls from the 
NIST SP 800-53 using TF-IDF vectorization. This technique 
emphasizes domain-specific security terminology while 
minimizing noise from general vocabulary. After removing 
English stop words and assigning weights to key terms, cosine 
similarity is calculated to identify the most relevant NIST 
control items. 

Some CVE entries in the NVD either lack CWE 
information or are labeled as unknown. In such cases, the 
system infers ISO and NIST mappings directly from the 
vulnerability description. To support this, the framework is 
designed for extensibility. Specifically, a pre-trained LLM is 
used to process the CVE description field as a prompt and 
extract relevant security characteristics and control items. This 
approach enables flexible interpretation of unstructured 
vulnerability data that is otherwise difficult to classify, and it 
is expected to improve the coverage and accuracy of the 
framework in future enhancements.  

During the reporting phase, CVE data filtered by a user-
specified date range can be exported in CSV or PDF format. 
Reports include the CVE ID, publication date, CVSS score, 
CWE, vulnerability description, ISO/IEC 25023 
characteristics, and NIST SP 800-53 control items. Users may 
also apply filtering options, such as excluding unmapped 
entries. 

B. Mapping between CWE and both security measures and 
controls 
To mitigate vulnerabilities effectively, it's essential to 

analyze CWEs. MITRE’s scoring formula for CWEs uses 
both the frequency of occurrence in NVD and the average 
CVSS score, normalized as follows: 

Score(CWEX) = Fr(CWEX)×Sv(CWEX)×100 
where: 

Fr(CWEX) =
count(CWEX ∈  NVD) − min(Freq)

max(Freq) − min(Freq)  

Sv(CWEX) =
average����(����) − min(CVSS)

max(CVSS) − min(CVSS)  

CVSS values (0.0–10.0) are classified into severity tiers as 
shown in Table 1: 

TABLE I.  CVSS SEVERITY CLASSIFICATION 

Severity CVSS Score Range Description 
High 7.0–10.0 Severe impact vulnerabilities 

Medium 4.0–6.9 Moderate impact vulnerabilities 
Low 0.0–3.9 Limited impact vulnerabilities 

 
Next, CWEs are mapped to mitigation strategies based on 

relevance, categorized as direct, partial, or indirect. This 
determines risk level, implementation priority, and weight, as 
summarized in Table 2. 

TABLE II.  MAPPING RELEVANCE AND WEIGHTING 

Relevance Type Risk Level Implementation Strategy Weight 
Direct Critical Core Requirement 3 
Partial High Enhancement 2 

Indirect Medium Optional Support 1 
 

AMVS assesses and maps the relationship between CWE 
and their countermeasures using LLM. This approach allows 
for automated analysis by enabling the LLM to analyze large 
datasets and learn patterns. Due to the nature of its training 
data, the model can identify relationships between entities. 
Even as new vulnerability data emerges, continuous learning 
enables it to keep the relationships between CWEs and 
corresponding countermeasures up to date with evolving 
security environments. Furthermore, analyzing the 
relationships between CWEs and countermeasures using 
LLMs and assigning weights provides more consistent and 
objective results compared to manual mapping, which may 
vary depending on who performs it. 

In the current software security landscape, a reactive 
approach predominates wherein developers must identify and 
implement mitigations only after vulnerabilities have been 
discovered and classified as CVEs and CWEs. This process 
burdens developers with individually researching and 
implementing countermeasures for each vulnerability. Such 
an approach not only leads to inefficient utilization of time and 
resources but may also compromise the consistency and 
systematization of security responses.  

This study analyzed 269,734 CVE vulnerability data points 
as of 2025 and performed automatic mapping to NIST control 
lists and ISO/IEC 25023 security measures based on the 
CWE Top 25 published in 2024 [17]. The results for the top 
five items from the Top 25 are systematically organized in 
Tables 3 and 4. 

TABLE III.  MAPPING RESULTS ISO SECURITY MEASURES (TOP 5) 

Rank ID Score Security 
Measures Weight Final 

Score 

1 CWE-79 56.92 Confidentiality  
(SCo-1-G) 3 1.71 

2 CWE-787 45.2 Integrity  
(SIn-1-G) 3 1.36 

3 CWE-89 35.88 Integrity  
(SIn-1-G) 3 1.08 

4 CWE-352 19.57 Authenticity 
(SAu-1-G) 2 0.39 

5 CWE-22 12.74 Confidentiality  
(SCo-3-S) 2 0.25 

TABLE IV.  MAPPING RESULTS NIST CONTROL ITEMS (TOP 5) 

Rank ID Score Representative 
NIST Control Weight Final 

Score 

1 CWE-79 56.92 SI-11 (Input 
Validation) 3 1.71 

2 CWE-787 45.2 SI-16 (Memory 
Protection) 3 1.36 

3 CWE-89 35.88 SI-10 (Input 
Verification) 3 1.08 

4 CWE-352 19.57 SC-17 (PKI) 2 0.39 

5 CWE-22 12.74 AC-3 (Access 
Enforcement 3 0.38 

The final score, considering weights, is calculated as follows: 

Final Score = (Score × Weight) ÷ 100 
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Finally, the execution priorities were determined based on 
the final score and the execution deadlines were presented as 
follows Table 5. 

TABLE V.  EXAMPLE OF EXECUTION PRIORITIES AND CORRESPONDING 
COUNTERMEASURES BASED ON FINAL SCORES. 

Final Score Interval Countermeasures 
> 1.0 Critical Immediate Implementation 

0.2–1.0 High Within 6 Months 
0.1–0.19 Medium Within 12 Month 

< 0.1 Low Periodic Review 
 

This automatic mapping system provides risk-based 
priorities through quantitative weighting that reflects the 
frequency and severity of vulnerability occurrence, and 
supports developers to respond quickly and effectively by 
standardizing security requirements. As a result, it contributes 
to systematizing the organization's security management and 
maximizing efficiency. 

C. Enhancing SRS and SDD with Security Guidance 
The SRS is a deliverable created at the beginning of the 

software development process, where software requirements 
are analyzed and defined—including user requirements 
related to specific security features and attributes of the system 
to mitigate security threats [18]. As outlined in IEEE Std 830, 
a typical SRS includes sections such as the overall product 
description, system function requirements, and other 
requirements. The system function requirements cover 
functional requirements, performance requirements, external 
interface requirements, and design constraints. 

When drafting the system function requirements in the 
SRS, AMVS can assist by providing countermeasures that 
address weighted security vulnerabilities, as shown in Table 6. 
By presenting prioritized security requirements based on the 
sub-characteristics of security from ISO/IEC 25023 and 
relevant NIST security control items, the specification can be 
made more comprehensive and actionable. 

This approach offers several advantages. Clearly defined 
requirements help reduce implementation errors and enhance 
overall security. By detailing requirements based on system-
generated content, ambiguity between developers and 
stakeholders can be minimized, thereby preventing 
misinterpretations during development. Furthermore, 
incorporating security considerations from the design phase 
helps reduce the cost and complexity of addressing 
vulnerabilities later in the lifecycle. Specifically, including 
explicit security controls—such as input validation, memory 
protection, and access control—at the SRS drafting stage 
ensures early integration of security, reducing the likelihood 
of vulnerabilities and offering long-term cost-saving benefits. 

TABLE VI.  EXAMPLE OF SRS WITH AMVS-MAPPED SECURITY 
GUIDELINES 

1. Functional Security Requirements 

Design requirement AMVS –mapped  
security guideline 

ID Requirement Mapping Priority 
(Score) 

1.1. Input Validation 

SEC-FR-01 
All user inputs shall be 
filtered for HTML/JS 
using OWASP ESAPI 

SI-11, SIn-1G Critical 
(1.71) 

SEC-FR-02 

Whitelist-based input 
filtering shall be 

implemented to prevent 
OS command injection 

SI-10, SIn-2G High 
(0.34) 

1. Functional Security Requirements 

Design requirement AMVS –mapped  
security guideline 

1.2. Memory Protection 

SEC-FR-03 

Address Space Layout 
Randomization (ASLR) 

shall be enabled to prevent 
buffer overflows 

SI-16, SIn-1G Critical 
(1.36) 

1.3. Access Control 

SEC-FR-04 

Account lockout 
functionality shall be 

implemented after 
authentication failures 

IA-5 Medium 
(0.10) 

 
The SDD, as defined in IEEE Std. 1016 [19], is a critical 

document in the SDLC that translates the security 
requirements specified in the SRS into concrete system design 
elements. By applying AMVS during the design phase—
which outlines the software’s structure, components, and 
interactions—security issues related to data flow and 
communication paths can be more clearly identified and 
addressed. 

Incorporating security requirements systematically at the 
design stage enables structured evaluation of potential 
vulnerabilities during implementation and verification. The 
SDD reflects the weighted priorities provided by the mapping 
system for the content defined in the SRS, and presents 
detailed measures in Table 7 to guide the development of 
software that mitigates vulnerabilities according to their 
criticality. 

TABLE VII.  EXAMPLE OF SDD WITH AMVS-MAPPED SECURITY 
GUIDELINES. 

2. Security Design Viewpoints 

Design requirement AMVS –mapped  
security guideline 

Design Measure Implementation Mapping Priority 
(Score) 

2.1. Input Validation 

All user inputs shall be 
filtered for HTML tags and 
JavaScript using OWASP 
ESAPI 

Server-side 
validation 
 Module 

(input Sanitizer) 
 implementation 

SI-11, 
SIn-1G 

Critical 
(1.71) 

2.2.MemoryProtection 
Enable Address Space 
 Layout Randomization 
 (ASLR) and Stack Canary 

Compiler 
option:-fstack-

protector 

SI-16, 
SIn-1G 

Critical 
 (Score: 
 1.36) 

2.3.AccessControl 
Implement Role-Based 
 Access Control (RBAC) 

 model 

Spring Security 
 @PreAuthorize 

annotation 

AC-6, 
SAc-1G 

High 
 (Score: 
 0.30) 

Support Multi-Factor 
Authentication (MFA) and  
OAuth2.0 

Keycloak 
integration 

IA-5, 
SAu-1G 

Medium 
 (Score: 
 0.18) 

IV. EVALUATION 
In this study, to compare the expert-based approach with 

the proposed AMVS, three security experts were selected, 
each with over ten years of practical experience in the fields 
of cybersecurity and the defense industry. These experts 
possess diverse hands-on experience in areas such as defense 
software security verification and cyber threat analysis. The 
open-source PX4, widely used by drone manufacturers and 
research institutions around the world, was selected as the 
evaluation target. A manual vulnerability analysis was 
conducted based on CVE and CWE data, followed by security 
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countermeasure mapping to ISO and NIST standards. Each 
expert was given the same set of four CVE entries, and 
evaluations were independently conducted in terms of 
analysis time and accuracy of the proposed mitigation 
strategies. (This study was conducted with the voluntary 
participation of the experts. No personally identifiable 
information was collected, and since it does not involve 
human subjects research, IRB approval was not required.) 

The process of vulnerability analysis and countermeasure 
derivation was carried out using two approaches—an expert-
based method and the automated framework method—as 
illustrated in Fig. 3. 

 

 
Fig. 3. Vulnerability Response Procedure. 

The individual mapping time and accuracy of each of the 
three experts for the appropriate ISO and NIST items are 
shown in Figure 4.  
 

 

 
Fig. 4. Comparison of Mapping Time and Accuracy Between Three 
Experts and AVMS. 

 
Table 8 presents the average values from the experts and 

the corresponding results obtained using the AMVS. On 
average, the experts required approximately 172 minutes per 
vulnerability for the mapping analysis, with a mitigation 
accuracy of around 73.7%. In contrast, AMVS completed the 
mapping in less than 3 minutes on average and achieved an 

accuracy of approximately 92%, demonstrating its efficiency 
and effectiveness. 

TABLE VIII.  MAPPING RESULTS OF VULNERABILITY MITIGATION 
MEASURES FOR PX4. 

The automated mapping result of PX4 vulnerabilities to 
ISO/IEC 25023 and NIST control items using the AMVS 
system is presented in Table 9. The calculated risk score of 
0.294, derived from severity and priority assessments, 
classifies this as a high-risk issue. To mitigate this 
vulnerability, AMVS recommends implementing the 
following specific security controls:  

• IA-2(Identification and Authentication)– Enforce robust 
authentication mechanisms. 

 • SAu-1-G– Verify operational authenticity 

TABLE IX.  MAPPING OF PX4 CVES TO ISO/IEC 25023 AND NIST SP 
800-53. 

CVE 
ID 

CWE 
ID Score 

ISO/IEC 
25023 

Measure 

NIST SP 
800-53 

Control 

Prior
ity 

Final 
Score 

CVE-
2020-
24908 

CWE-
306 9.8 SAu-1-G IA-2 3 0.29

4 

CVE-
2022-
32245 

CWE-
120 8.1 SIn-1-G SI-16 3 0.24

3 

CVE-
2023-
45678 

CWE-
285 7.2 SAc-1-G AC-6 2 0.14

4 

CVE-
2024-
11223 

CWE-
798 6.5 SCo-2-G IA-5 2 0.13 

 
Regarding the major security vulnerabilities identified in 

PX4, the proposed automated mapping framework was able to 
automatically generate mappings within the SDLC 
development phases—specifically to the SRS and SDD 
stages—as shown in Tables 10 and 11. This approach helps 
reduce implementation errors and mitigates ambiguity in 
requirements during the development process, thereby 
enhancing overall security. 

TABLE X.  PX4 SRS WITH AMVS-MAPPED SECURITY GUIDELINES. 

1. Functional Security Requirements 

ID Requirement Description 
AMVS-Mapped Security 

Guideline 
Mapping Priority 

SEC-
FR-01 

All MAVLink packets must verify 
length (msg->len) and checksum 

(CRC32) upon receipt. 

SI-10,  
SIn-1-G Critical 

SEC-
FR-02 

Check for integer overflow when 
parsing GPS data (if altitude > 

INT32_MAX). 

SI-16,  
SIn-2-G High 

SEC-
FR-03 

Verify Ed25519 digital signature 
during firmware upload 
(px4_firmware_verify). 

IA-2,  
SAu-1-G Critical 

CVE ID CWE ID 
Expert AMVS 

mapping 
Time(min) 

Mapping 
Accuracy (%) 

mapping 
Time(min) 

Mapping 
Accuracy (%) 

CVE-2020- 
24908 CWE-306 240 85 3 95 

CVE-2022- 
32245 CWE-120 180 75 3 94 

CVE-2023- 
45678 CWE-285 150 70 3 92 

CVE-2024- 
11223 CWE-798 120 65 3 90 

Average 172.5 73.75 3 92.75 
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SEC-
FR-04 

Check role-based permissions when 
accessing uORB topics 

(px4_orb_access_check()). 

AC-6,  
SAc-1-G High 

SEC-
FR-05 

SD card encryption keys must not be 
hardcoded; load from environment 

variables at runtime. 

IA-5, 
SCo-2-G Critical 

Similarly, Table 11 demonstrates how SDD requirements 
explicitly incorporate vulnerability mitigation strategies by 
AMVS. This design aims to strengthen authentication 
protocols, key management, and data protection measures. 

TABLE XI.  PX4 SDD WITH AMVS-MAPPED SECURITY GUIDELINES. 

2.Detailed Security Measures 

Design Measure Implementation 
AMVS -Mapped 
Security Guideline 
Mapping Priority 

2.1. Authentication Enhancement 
Firmware Signature 

Verification: Use Ed25519 
digital signatures; manage 
signing keys via TPM 2.0 

(Pixhawk 6X). 

Halt boot process on 
invalid signature 

detection. 

IA-2,  
SAu-1-G Critical 

HSM Integration: Secure 
key storage via TPM 2.0 

(Pixhawk 6X). 

Simulate and test key 
extraction attempts. IA-5 High 

2.2. Key Management 
SD Card Key Management: 

Dynamically load from 
environment variables. 

Simulate key 
absence scenarios. 

IA-5,  
SCo-2-G High 

Memory Protection: Apply 
XOR masking for sensitive 

data. 

Perform memory 
dump analysis to 

verify key 
obfuscation. 

SC-28 Medium 

2.3. Data Protection 
SD Card Encryption: AES-
256 encryption with keys 
loaded from environment 

variables. 

Analyze memory 
dumps for key 

leakage. 

IA-5,  
SCo-2-G Medium 

MAVLink Encryption: 
Integrate DTLS 1.3. 

Perform Wireshark 
packet analysis. 

SC-8,  
SCo-1-G Medium 

 

The key advantages of AMVS for PX4 security hardening 
include the ability to define security requirements 
systematically and standards-based during the design process, 
automated vulnerability-to-control mapping through 
prioritized remediation workflows, and optimized resource 
allocation through risk-weighted action plans. The framework 
proactively addresses vulnerabilities while maintaining 
compliance with ISO/IEC 25023 and RMF standards. 

V. CONCLUSIONS 
This paper proposed the AMVS framework to enhance the 

cybersecurity of weapon systems by automatically mapping 
software vulnerabilities to appropriate mitigation strategies. 
AMVS supports the software development process by 
providing context-aware security measures and automated 
recommendations for functionally similar components, 
thereby enabling proactive risk elimination. 

The framework introduces a novel integration of ISO/IEC 
25023, an international standard for software quality 
measurement, and the RMF from the U.S. Department of 
Defense. By continuously updating vulnerability data and 
assigning response priorities based on risk levels, AMVS 
significantly improves software security posture. 

The proposed approach offers reliable and standardized 
responses to common security challenges. It minimizes 

subjective bias by automatically identifying and prioritizing 
high-risk and frequently occurring vulnerabilities, ultimately 
reducing development time and cost. These capabilities 
support the development of safe and trustworthy software by 
delivering effective and repeatable mitigation strategies. 

By applying this framework to practical development 
artifacts such as the SRS and SDD in the early stages of 
weapon system development, accurate security requirements 
can be defined, known vulnerabilities can be addressed, and 
proactive protection can be assured. This contributes directly 
to the realization of robust software security in operational 
environments. 

Future work will focus on developing AI-based tools that 
automatically assess vulnerabilities in development 
documents and suggest corresponding mitigations. This 
includes automating software quality evaluation processes and 
integrating AI-based solutions for issue resolution. 
Furthermore, by aligning with international standards such as 
NATO STANAG, this research aims to contribute to the 
global standardization of software quality metrics in defense 
systems. 
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