AMVS: Automated Mapping of Vulnerabilities to
Security Standards in Military Software

Sungjae Choi
Division of Computer Convergence
Chungnam National University
Daejeon, Republic of Korea
Email : ntchoi@o.cnu.ac.kr

Jinsoo Jang
Division of Computer Convergence
Chungnam National University
Daejeon, Republic of Korea
Email : jisjang@o.cnu.ac.kr

Abstract— As software plays a critical role in the
performance and security of modern weapon systems,
integrating security engineering throughout the software
development life cycle is becoming increasingly essential. This
paper introduces AMVS, an automated framework that
systematically maps responses to software vulnerabilities to
international security standards. AMVS leverages ISO/IEC
25023 for software quality, the Risk Management Framework
(RMF) based on NIST SP 800-53 Rev. 5, and real-time
CVE/CWE data to establish traceable and quantifiable security
requirements from the design stage. The framework collects
CVE data through web crawling, classifies them by CWE, and
assigns severity-based weights to each vulnerability. It then
automatically maps optimal security measures to corresponding
ISO and RMF control items. These mappings are applied
directly to system design documents, enabling developers to
prioritize and implement security controls with minimal manual
effort. A case study on the PX4 flight control platform
demonstrates the effectiveness and scalability of the proposed
framework. AMVS enhances the development of resilient and
standards-compliant military software systems capable of
proactively responding to emerging cyber threats.

Keywords— Cyber-attacks, SDLC, weapon system, OSS,
ISO/IEC 25023, RMF, Security measures, CVE, CWE, Drone

[. INTRODUCTION

As modern weapon systems rapidly evolve, embedded
software has become essential for ensuring reliability,
responsiveness, and mission success. Autonomous and highly
connected platforms—such as military drones used for
reconnaissance, surveillance, target acquisition, and precision
strikes—are particularly vulnerable to cyberattacks that
exploit software weaknesses. Real-world incidents, including
the spoofing attack on the U.S. Q-drone, have demonstrated
that software vulnerabilities can pose serious threats to
national security [1,2].

Addressing such challenges requires more than reactive
patching; instead, a systematic and standards-based security
methodology must be applied throughout the software
lifecycle—including design, development, deployment, and
maintenance. This approach entails defining security
requirements during the design phase and ensuring their
traceability through implementation and verification.

To support this goal, this study leverages three core
elements: (1) ISO/IEC 25023, an international standard for
measuring software quality; (2) the U.S. Department of
Defense's RMF; and (3) structured vulnerability data from

979-8-3315-5678-5/25/$31.00 ©2025 IEEE

Dongkyun Yang
Division of Computer Convergence
Chungnam National University
Daejeon, Republic of Korea
Email : h2861331@o.cnu.ac.kr

62

Sojin Na
Division of Computer Convergence
Chungnam National University
Daejeon, Republic of Korea
Email : sjna@o.cnu.ac.kr

public sources such as CVE and CWE. ISO/IEC 25023
provides quantifiable quality metrics, RMF offers lifecycle-
integrated security controls for defense systems, and
CVE/CWE enable proactive vulnerability tracking and
classification.

However, ISO/IEC 25023 does not specify detailed
security control mechanisms for mission-critical systems, and
RMF—though comprehensive—is complex and only partially
disclosed. While CVE and CWE standardize vulnerability
disclosure, they do not directly map to mitigation controls or
design requirements. Although integrating these standards and
datasets enables the systematic definition and traceability of
security requirements from the design stage, the manual
mapping process is time-consuming, error-prone, and
inconsistent, especially as the volume of known
vulnerabilities continues to grow.

To address this issue, we propose an automated framework
that collects the latest CVE data, classifies them into CWE
categories, and assigns weighted scores based on severity and
likelihood. Through this approach, developers can
automatically associate prioritized ISO and RMF-based
security controls with system design components. This
enables the application of validated countermeasures for
critical vulnerabilities while reducing the risk of omissions.

This study validates the proposed framework using PX4, a
widely adopted open-source flight control system for military
drones. Through expert comparison and evaluations spanning
the firmware, operating system, and application layers, we
demonstrate the framework's scalability, objectivity, and
practical effectiveness. By continuously updating its
knowledge base and aligning with international standards, the
framework contributes to the development of resilient and
trustworthy software systems in defense environments.

The remainder of this paper is structured as follows:
Section II reviews international standards related to software
quality and security for weapon systems, including ISO/IEC
25023 and RMEF. Section III presents the design and
methodology of the proposed framework that integrates ISO
and RMF controls. Section IV illustrates its applicability
through a case study on PX4. Finally, Section V concludes the
paper and outlines directions for future work.

II. RELATED WORK AND BACKGROUND

In general, verifying the quality of software in weapon
systems remains limited for several reasons. First, when a
weapon system is being developed for the first time, it is often

ICTC 2025

difficult to define user requirements clearly. Even when such
requirements are defined, there is a lack of internationally
recognized standards for measuring the quality of weapon
system software. Furthermore, discrepancies between
development phases can lead to inconsistencies where the
deliverables fail to fully reflect the defined requirements.

To address this, it is necessary to adopt a systematic
approach to improving software quality from the early stages
of weapon system development. The international standard
ISO/TEC 25023, which provides quantitative metrics for
software quality, offers a promising solution [3]. However,
when applied in isolation, ISO/IEC 25023 has limitations in
several key areas, including security threat management,
dynamic threat response, supply chain security, security
integration across development phases, and secure
maintainability [4 -7].

Beyond software quality management, one of the most
critical aspects of operating weapon systems is ensuring the
integrity and trustworthiness of data processed within the
system. In response to this need, the United States established
the RMF in 2013 as a security evaluation standard [8]. The
RMF includes control families—comprehensive sets of
safeguards designed to satisfy security requirements. These
controls are accompanied by supplemental guidance and
control enhancements. Based on NIST SP 800-53 Rev. 5, the
RMF consists of 20 control families and 1,013 individual
control numbers [9]. By clearly defining security requirements,
the RMF allows developers to incorporate security
considerations from the earliest stages of system design and
ensures consistent application of security controls across
various components of complex weapon systems, thereby
enhancing overall system security [10].

Previous studies on RMF have examined its application in
weapon system software development and cybersecurity
enhancement [11-13], and further research has explored
improvements in RMF implementation procedures and
evaluation methods [14,15]. However, when applying the
RMF to weapon systems development outside the United
States, several limitations arise. Although RMF is a publicly
available framework based on NIST documentation, many of
its components—such as details on classified operational
environments, military encryption technologies, and specific
threat models for weapon systems—are not publicly disclosed.
This restricts its direct application as an international standard.
Therefore, rather than fully adopting the RMF framework,
selectively applying its relevant components to reinforce
cybersecurity may be a more practical approach.

Systematically addressing software vulnerabilities is
essential to improving the reliability of weapon system
software. While databases like CVE and CWE are valuable
for identifying and categorizing known vulnerabilities, they
do not provide explicit guidance on mitigation strategies or
design-level solutions. As a result, developers are burdened
with the responsibility of analyzing, fixing, and developing
prevention strategies on their own. This manual and subjective
process makes it difficult to objectively assess whether the
resulting software meets required security quality standards,
thereby increasing the likelihood of degraded quality and the
emergence of additional vulnerabilities.

To overcome these challenges, this study proposes the
following: (1) automated vulnerability management, (2)
automatic mapping of security countermeasures using
ISO/IEC 25023 and RMF standards, and (3) support for
efficient documentation throughout the software development

63

process. Collectively, these contributions address the

limitations of existing practices in this domain.

III. AMVS DESIGN

The overall process of the AMVS framework is depicted
in Fig 1. When a software vulnerability is identified, the
proposed system collects the latest CVE and CWE data,
analyzes and classifies them by considering severity and
weighted factors, and then utilizes a custom-developed LLM-
based engine to automatically map optimal mitigation
strategies. This mapping is performed with reference to NIST
and ISO security standards to ensure the most effective
countermeasures. As a result, the framework provides
developers with optimal vulnerability responses and
automatically generates design documents, such as the SRS
and SDD, that incorporate these requirements.

Vulnerility
mapping documents

Input i Output
| -
i =ACE [N =] Severity
[Ue R EW ssons _|
§=|| I | Latest CVEICWE Analysis and % >
! crawling classification

Vulnembiliclg‘J,iEnfonuation] %ﬁ] P ﬁ“ gﬂ

Security requirements mapping
Remediation requirements

Design requirements
documents
(SRS, SDD)

__ and documents generation /

Secuity
controls

=

SW Vulnerability

Hiformati Security-guided
L NIST-security controls ISO-security measures documents
Fig. 1. AMVS framework
A. Vulnerability Collection and Classification
The AMVS framework aims to reduce software

vulnerabilities by providing developers with mitigation
strategies based on the latest CVE data. It automatically
collects and organizes vulnerability information from CVE
records in the NVD.

Input:
search range

CVE
Database

CVE deriviation

s CW
already mapped?

Extract CWE
descrption

Extract CVE
description

keyword-based

CVE-to-CWE
mapping

|

ing and prioritization
1SO 25023

security measures

CWE-based

PP

| NIST controls

l

| Generate security-guided SW development docs.

Fig. 2. CVEs extraction and their mapping to security measures and controls.

The core architecture of the framework is illustrated in Fig
2. First, the latest CVE data is obtained using the CVE-fixes
database from the Secure IT project [16], which provides

normalized NVD data in SQLite format. Each entry includes
the CVE ID, publication date, CVSS score, vulnerability
description, and associated CWE identifier. Based on user-
defined criteria, CVEs are filtered and checked for the
presence of CWE identifiers. If available, the CWE data is
linked to the corresponding CVE record.

The mapping process is performed in two stages. First,
CWE entries are mapped to ISO/IEC 25023 security
characteristics using a keyword-based approach. Predefined
keywords are associated with each ISO security attribute, and

their occurrence in CWE descriptions determines the mapping.

Second, CWE entries are linked to security controls from the
NIST SP 800-53 using TF-IDF vectorization. This technique
emphasizes domain-specific security terminology while
minimizing noise from general vocabulary. After removing
English stop words and assigning weights to key terms, cosine
similarity is calculated to identify the most relevant NIST
control items.

Some CVE entries in the NVD either lack CWE
information or are labeled as unknown. In such cases, the
system infers ISO and NIST mappings directly from the
vulnerability description. To support this, the framework is
designed for extensibility. Specifically, a pre-trained LLM is
used to process the CVE description field as a prompt and
extract relevant security characteristics and control items. This
approach enables flexible interpretation of unstructured
vulnerability data that is otherwise difficult to classify, and it
is expected to improve the coverage and accuracy of the
framework in future enhancements.

During the reporting phase, CVE data filtered by a user-
specified date range can be exported in CSV or PDF format.
Reports include the CVE ID, publication date, CVSS score,
CWE, vulnerability description, ISO/IEC 25023
characteristics, and NIST SP 800-53 control items. Users may
also apply filtering options, such as excluding unmapped
entries.

TABLE II MAPPING RELEVANCE AND WEIGHTING

Relevance Type | Risk Level Implementation Strategy Weight
Direct Critical Core Requirement 3
Partial High Enhancement 2

Indirect Medium Optional Support 1

AMVS assesses and maps the relationship between CWE
and their countermeasures using LLM. This approach allows
for automated analysis by enabling the LLM to analyze large
datasets and learn patterns. Due to the nature of its training
data, the model can identify relationships between entities.
Even as new vulnerability data emerges, continuous learning
enables it to keep the relationships between CWEs and
corresponding countermeasures up to date with evolving
security environments. Furthermore, analyzing the
relationships between CWEs and countermeasures using
LLMs and assigning weights provides more consistent and
objective results compared to manual mapping, which may
vary depending on who performs it.

In the current software security landscape, a reactive
approach predominates wherein developers must identify and
implement mitigations only after vulnerabilities have been
discovered and classified as CVEs and CWEs. This process
burdens developers with individually researching and
implementing countermeasures for each vulnerability. Such
an approach not only leads to inefficient utilization of time and
resources but may also compromise the consistency and
systematization of security responses.

This study analyzed 269,734 CVE vulnerability data points
as of 2025 and performed automatic mapping to NIST control
lists and ISO/IEC 25023 security measures based on the
CWE Top 25 published in 2024 [17]. The results for the top
five items from the Top 25 are systematically organized in
Tables 3 and 4.

B. Mapping between CWE and both security measures and TABLEII. MAPPING RESULTS ISO SECURITY MEASURES (TOP 5)
controls Security Final
.. Rank 1D Score Weight
To mitigate vulnerabilities effectively, it's essential to Measures Score
analyze CWEs. MITRE’s scoring formula for CWEs uses 1 CWE-79 569y | Confidentiality 3 1.71
) (SCo-1-G)
both the frequency of occurrence in NVD and the average Integrity
CVSS score, normalized as follows: 2 CWE-787 | 45.2 (SIn-1-G) 3 1.36
T Ex) = X X -
Sco C(CW X) Fr(CWEX) SV(CWEX) 100 3 CWE-89 35,88 Integrity 3 1.08
where: (SIn-1-G)
Fr(CWEK) count(CWEX € NVD) — min(Freq) 4 CWE-352 | 19.57 A(gilznln%t)y 2 0.39
r = - T
max(Freq) — min(Freq) 5 CWE-22 12.74 | Confidentiality 2 0.25
(SCo-3-S)
averagecyss(cwgx) — min(CVSS)
Sv(CWEX) = . TABLE IV. MAPPING RESULTS NIST CONTROL ITEMS (TOP 5)
max(CVSS) — min(CVSS)
. . o Representative . Final
(LVSS yal¥e}s:) l(0.10—10.0) are classified into severity tiers as Rank D Score NI%T Control | YYeight | ¢
shown in Table 1: B
I | CWE79 | se92 | Sill(nput 3
Validation)
TABLE L CVSS SEVERITY CLASSIFICATION 5 CWE-787 452 SIi’ 1r2t(el\c’{?;1lf)>fy 3 136
Severity CVSS Score Range Description SI-10 (Input
High 7.0-10.0 Severe impact vulnerabilities 3 CWE-89 35.88 Verification) 3 1.08
Medium 4.0-6.9 Moderate impact vulnerabilities 4 CWE-352 19.57 SC-17 (PKI) 2 0.39
Low 0.0-3.9 Limited impact vulnerabilities 5 CWE-22 1274 AC-3 (Access 3 038
Enforcement

Next, CWEs are mapped to mitigation strategies based on
relevance, categorized as direct, partial, or indirect. This
determines risk level, implementation priority, and weight, as
summarized in Table 2.

64

The final score, considering weights, is calculated as follows:

Final Score = (Score X Weight) +~ 100

Finally, the execution priorities were determined based on
the final score and the execution deadlines were presented as
follows Table 5.

TABLE V. EXAMPLE OF EXECUTION PRIORITIES AND CORRESPONDING
COUNTERMEASURES BASED ON FINAL SCORES.
Final Score Interval Countermeasures
>1.0 Critical Immediate Implementation
0.2-1.0 High Within 6 Months
0.1-0.19 Medium Within 12 Month
<0.1 Low Periodic Review

This automatic mapping system provides risk-based
priorities through quantitative weighting that reflects the
frequency and severity of vulnerability occurrence, and
supports developers to respond quickly and effectively by
standardizing security requirements. As a result, it contributes
to systematizing the organization's security management and
maximizing efficiency.

C. Enhancing SRS and SDD with Security Guidance

The SRS is a deliverable created at the beginning of the
software development process, where software requirements
are analyzed and defined—including user requirements
related to specific security features and attributes of the system
to mitigate security threats [18]. As outlined in IEEE Std 830,
a typical SRS includes sections such as the overall product
description, system function requirements, and other
requirements. The system function requirements cover
functional requirements, performance requirements, external
interface requirements, and design constraints.

When drafting the system function requirements in the
SRS, AMVS can assist by providing countermeasures that
address weighted security vulnerabilities, as shown in Table 6.
By presenting prioritized security requirements based on the
sub-characteristics of security from ISO/IEC 25023 and
relevant NIST security control items, the specification can be
made more comprehensive and actionable.

This approach offers several advantages. Clearly defined
requirements help reduce implementation errors and enhance
overall security. By detailing requirements based on system-
generated content, ambiguity between developers and
stakeholders can be minimized, thereby preventing
misinterpretations during development. Furthermore,
incorporating security considerations from the design phase
helps reduce the cost and complexity of addressing
vulnerabilities later in the lifecycle. Specifically, including
explicit security controls—such as input validation, memory
protection, and access control—at the SRS drafting stage
ensures early integration of security, reducing the likelihood
of vulnerabilities and offering long-term cost-saving benefits.

TABLE VI EXAMPLE OF SRS WITH AMVS-MAPPED SECURITY

GUIDELINES

1. Functional Security Requirements

. . AMVS —mapped
Design requirement security guideli
ID Requirement Mapping }();CZ'ZS
1.1. Input Valid
All user inputs shall be Critical
SEC-FR-01 filtered for HTML/JS SI-11, SIn-1G (1.71)
using OWASP ESAPI)
Whitelist-based input
filtering shall be High
SEC-FR-02 implemented to prevent SE10, SIn-2G (0.34)
OS command injection

65

1. Functional Security Requirements
. . AMVS —mapped
Design requirement security guideli
1.2. Memory Protection
Address Space Layout
Randomization (ASLR) Critical
SEC-FR-03 shall be enabled to prevent SI-16, SIn-1G (1.36)
buffer overflows
1.3. Access Control
Account lockout
functionality shall be Medium
SEC-FR-04 implemented after IA-5 (0.10)
authentication failures

The SDD, as defined in IEEE Std. 1016 [19], is a critical
document in the SDLC that translates the security
requirements specified in the SRS into concrete system design
elements. By applying AMVS during the design phase—
which outlines the software’s structure, components, and
interactions—security issues related to data flow and
communication paths can be more clearly identified and
addressed.

Incorporating security requirements systematically at the
design stage enables structured evaluation of potential
vulnerabilities during implementation and verification. The
SDD reflects the weighted priorities provided by the mapping
system for the content defined in the SRS, and presents
detailed measures in Table 7 to guide the development of
software that mitigates vulnerabilities according to their
criticality.

TABLE VII. EXAMPLE OF SDD WITH AMVS-MAPPED SECURITY

GUIDELINES.

2. Security Design Viewpoints

. . AMVS —mapped
Design requirement security guideline
. . . Priority
Design Measure Implementation | Mapping (Score)
2.1. Input Validation
All user inputs shall be szrl‘i/gra_t?i)ie
filtered for HTML tags and Module SI-11, Critical
JavaScript using OWASP . o SIn-1G (1.71)
ESAPI (}nput Samtlz'er)
implementation
2.2.MemoryProtection
Enable Address Space Compiler Critical
e : SI-16,
Layout Randomization option:-fstack- SIn-1G (Score:
(ASLR) and Stack Canary protector 1.36)
2.3.AccessControl
Implement Role-Based Spring Security AC-6 High
Access Control (RBAC) (@PreAuthorize , (Score:
. SAc-1G
model annotation 0.30)
Support' ' Multi-Factor Keycloak IAS, Medium
Authentication (MFA) and . . (Score:
OAuth2.0 integration SAu-1G 0.18)

IV. EVALUATION

In this study, to compare the expert-based approach with
the proposed AMVS, three security experts were selected,
each with over ten years of practical experience in the fields
of cybersecurity and the defense industry. These experts
possess diverse hands-on experience in areas such as defense
software security verification and cyber threat analysis. The
open-source PX4, widely used by drone manufacturers and
research institutions around the world, was selected as the
evaluation target. A manual vulnerability analysis was
conducted based on CVE and CWE data, followed by security

countermeasure mapping to ISO and NIST standards. Each
expert was given the same set of four CVE entries, and
evaluations were independently conducted in terms of
analysis time and accuracy of the proposed mitigation
strategies. (This study was conducted with the voluntary
participation of the experts. No personally identifiable
information was collected, and since it does not involve
human subjects research, IRB approval was not required.)

The process of vulnerability analysis and countermeasure
derivation was carried out using two approaches—an expert-
based method and the automated framework method—as
illustrated in Fig. 3.

| Vulnerability Identification I-&l Analysis and Evaluation |-)

Expcrtl Review of C |~I Prioritization of Security Measures |-b

[of Security Requi |= SW Modification
1

Automated Collection and Classification of Vulnerabilities |= ‘

| : L

AMVS lAutomatod Mapping of Countermeasures [-v
of Security Requi |=

Fig. 3. Vulnerability Response Procedure.

I. Sy

The individual mapping time and accuracy of each of the
three experts for the appropriate ISO and NIST items are
shown in Figure 4.

mapping time
300

250
200
150

100

CVE 24908 CVE 32245 CVE 4568 CVE 11223

Expert: EEMA EmB mmC —AMVS

mapping accuracy
100

%0
80
70
60
50
40

0 I I . '

30
CVE 24908 CVE 32245 CVE 4568 CVE 11223

20

Expert: EENA B mmC —AMVS

Fig. 4. Comparison of Mapping Time and Accuracy Between Three
Experts and AVMS.

Table 8 presents the average values from the experts and
the corresponding results obtained using the AMVS. On
average, the experts required approximately 172 minutes per
vulnerability for the mapping analysis, with a mitigation
accuracy of around 73.7%. In contrast, AMVS completed the
mapping in less than 3 minutes on average and achieved an

66

accuracy of approximately 92%, demonstrating its efficiency
and effectiveness.

TABLE VIIL MAPPING RESULTS OF VULNERABILITY MITIGATION
MEASURES FOR PX4.
Expert AMVS
CVE ID CWE ID | mapping Mapping mapping Mapping
Time(min) |Accuracy (%)| Time(min) |Accuracy (%)
CVE-2020-
24908 CWE-306 240 85 3 95
CVE-2022-
32245 CWE-120 180 75 3 94
CVE-2023-
45678 CWE-285 150 70 3 92
CVE-2024-
11223 CWE-798 120 65 3 90
Average 172.5 73.75 3 92.75

The automated mapping result of PX4 vulnerabilities to
ISO/IEC 25023 and NIST control items using the AMVS
system is presented in Table 9. The calculated risk score of
0.294, derived from severity and priority assessments,
classifies this as a high-risk issue. To mitigate this
vulnerability, AMVS recommends implementing the
following specific security controls:

* IA-2(Identification and Authentication)— Enforce robust
authentication mechanisms.

* SAu-1-G— Verify operational authenticity

TABLEIX. MAPPING OF PX4 CVES T0 ISO/IEC 25023 AND NIST SP

800-53.
ISOAEC | NISTSP .)

CI‘I')E Cl‘gE Score | 25023 800-53 P.’t“” SF inal
Measure Control 1y core

CVE-

2020- C;Xg‘ 98 | SAu-1-G | 1A=2 3 Ofg

24908

CVE-

2022- ng' 81 | SI-1-G SI-16 3 0‘324

32245

CVE-

2023- C2\78V;E— 72 | SAc-1-G | AC-6 2 0';4

45678

CVE-

2024- C7“9]§_ 6.5 SCo-2-G 1A-5 2 0.13

11223

Regarding the major security vulnerabilities identified in
PX4, the proposed automated mapping framework was able to
automatically generate mappings within the SDLC
development phases—specifically to the SRS and SDD
stages—as shown in Tables 10 and 11. This approach helps
reduce implementation errors and mitigates ambiguity in
requirements during the development process, thereby
enhancing overall security.

TABLE X. PX4 SRS WITH AMVS-MAPPED SECURITY GUIDELINES.
1. Functional Security Requirements
AMVS-Mapped Security
ID Requirement Description Guidelii
Mapping Priority
All MAVLink packets must verify
SEC- SI-10, ..
FR-01 length (msg->len) and checksum SIn-1-G Critical
(CRC32) upon receipt.
Check for integer overflow when
FS]E—((:)_Z parsing GPS data (if altitude > S?i_—I;’G High
INT32_MAX).
SEC- Verify Ed25519 digital signature IA-2, N
during firmware upload Critical
FR-03 . SAu-1-G
(px4_firmware_verify).

SEC- Check role-b_ased permissions when AC-6, '
FR-04 accessing uORB topics SAC-1-G High
(px4_orb_access_check()).
SD card encryption keys must not be
SEC- . 1A-5, ..
hardcoded; load from environment Critical
FR-05 ’ . SCo-2-G
variables at runtime.

Similarly, Table 11 demonstrates how SDD requirements
explicitly incorporate vulnerability mitigation strategies by
AMVS. This design aims to strengthen authentication
protocols, key management, and data protection measures.

TABLE XI. PX4 SDD wiTH AMVS-MAPPED SECURITY GUIDELINES.
2.Detailed Security Measures
AMYV'S -Mapped
Design Measure Implementation | Security Guideline
Mapping | Priority
12.1. Authentication Enh t
Firmware Signature
Verification: Use Ed25519 | Halt boot process on
S . S 1A-2, o
digital signatures; manage | invalid signature SAL-L.G Critical
signing keys via TPM 2.0 detection.
(Pixhawk 6X).
HSM Integration: Secure |.
key storage via TPM 2.0 S;:r;::foin; t’f;t l::y 1A-5 High
(Pixhawk 6X). PIs.
2.2. Key Management
DKoot simaeiey | 5 [y
. . absence scenarios. | SCo-2-G
environment variables.
Memory Protection: Apply gzﬁon;;?e:ifg
XOR masking for sensitive P ana’y SC-28 | Medium
verify key
data. .
obfuscation.
2.3. Data Protection
SD Card Encryptl(?n: AES- Analyze memory
256 encryption with keys dumps for ke 1A-5, Medium
loaded from environment P ¥ SCo-2-G
. leakage.
variables.
MAVLink Encryption: Perform Wireshark | SC-8, Medium
Integrate DTLS 1.3. packet analysis. | SCo-1-G

The key advantages of AMVS for PX4 security hardening
include the ability to define security requirements
systematically and standards-based during the design process,
automated vulnerability-to-control ~ mapping through
prioritized remediation workflows, and optimized resource
allocation through risk-weighted action plans. The framework
proactively addresses vulnerabilities while maintaining
compliance with ISO/IEC 25023 and RMF standards.

V. CONCLUSIONS

This paper proposed the AMVS framework to enhance the
cybersecurity of weapon systems by automatically mapping
software vulnerabilities to appropriate mitigation strategies.
AMVS supports the software development process by
providing context-aware security measures and automated
recommendations for functionally similar components,
thereby enabling proactive risk elimination.

The framework introduces a novel integration of ISO/IEC
25023, an international standard for software quality
measurement, and the RMF from the U.S. Department of
Defense. By continuously updating vulnerability data and
assigning response priorities based on risk levels, AMVS
significantly improves software security posture.

The proposed approach offers reliable and standardized
responses to common security challenges. It minimizes

67

subjective bias by automatically identifying and prioritizing
high-risk and frequently occurring vulnerabilities, ultimately
reducing development time and cost. These capabilities
support the development of safe and trustworthy software by
delivering effective and repeatable mitigation strategies.

By applying this framework to practical development
artifacts such as the SRS and SDD in the early stages of
weapon system development, accurate security requirements
can be defined, known vulnerabilities can be addressed, and
proactive protection can be assured. This contributes directly
to the realization of robust software security in operational
environments.

Future work will focus on developing Al-based tools that
automatically assess vulnerabilities in development
documents and suggest corresponding mitigations. This
includes automating software quality evaluation processes and
integrating Al-based solutions for issue resolution.
Furthermore, by aligning with international standards such as
NATO STANAG, this resecarch aims to contribute to the
global standardization of software quality metrics in defense
systems.

REFERENCES

[1] J. Smith et al., “Military applications of UAVs: A comprehensive

review,” Defense Technology, vol. 14, no. 1, 2020.

B. Williams, “Analysis of the RQ-170 spoofing attack: Lessons
learned,” Cyber Defense Review, vol. 8, no. 3, 2019.

(2]

[3] ISO/IEC 25023, “Systems and Software Engineering—Measurement
of System and Software Product Quality,” ISO, 2016.
M.HowardandS.Lipner, The
Microsoft Press, 2006.

Y. Chen and J. Kim, “Dynamic Risk Analysis in Cybersecurity,” IEEE
Security & Privacy, 2020.

Microsoft SDL Practices Documentation, 2022.

P. Sullivan et al., “Challenges in Supply Chain Security for Modern
Software Systems,” ACM Transactions, 2019.

NIST, Risk Management Framework for Information Systems and
Organizations, NIST SP 800-37 Rev. 2, Dec. 2018.

NIST, Security & Privacy Controls for Information Systems and
Organizations, NIST SP 800-53 Rev. 5, Sept. 2020.

G. Stoneburner, A. Gojuen, and A. Feringa, Risk Management Guide
for Information Technology Systems (NIST SP 800-30), 2002.

A. Johnson et al., “Implementation of RMF in Federal IT Systems:
Case Studies and Lessons Learned,” Government IT Review, vol. 734
15, no. 2, 2020.

L. Chen et al., “Adapting RMF for Critical Infrastructure Protection,”
IEEE Transactions on Cybersecurity, vol. 8, no. 3, 2021.

[4] Security Development Lifecycle.

(5]
(6]

(8]
(9]
[10]

(1]

[12]
[13] S. Park, “Case Study on RMF Application in Defense Systems,”
Journal of Defense Cybersecurity, n.d.

[14] J. Lee et al., “Improving RMF Processes for Agile Development
Environments,” Software Security Review, vol. 11, no. 4, 2019.

[15] M.Smith, “Streamlining RMF: Challenges and Opportunities,” Cyber
Process Optimization Journal, n.d.

G. Bhandari, A. Naseer, and L. Moonen, “CVEfixes: Automated
Collection of Vulnerabilities and Their Fixes from Open-Source 743
Software,” in Proceedings of the 17th International Conference on
Predictive Models and Data Analytics in Software Engineering, Athens,
744 Greece, Aug. 2021, pp. 30-39.

CWE Top 25 Most Dangerous Software Weaknesses. [Online].
Available: https://cwe.mitre.org/top25/ (accessed May 2025).

IEEE Computer Society, IEEE Recommended Practice for Software
Requirements Specification (IEEE Std 830-1998), 1998.

IEEE Computer Society, IEEE Standard for Information Technology
System Design SW Design Description (IEEE Std 1016-2009), 2009.

[16]

[17]
(18]

[19]

