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Abstract—This research presents a self-play reinforcement
learning framework for the game of Othello, enabling generaliza-
tion across diverse board constraints. These constraints include
variable board sizes, blocked cells, and total inference time
limitations. FastOthelloNet incorporates a lightweight convolu-
tional input architecture and employs Monte Carlo Tree Search
(MCTS) for efficient planning. Unlike AlphaZero, which assumes
a fixed board structure, or MuZero, which explicitly models latent
dynamics, FastOthelloNet is trained directly on a randomized
Othello environment with dynamic constraints, eliminating the
need for a complex world model.

Index Terms—Reinforcement learning, generalization, self-
play, Othello, Monte Carlo Tree Search, convolutional neural
networks

I. INTRODUCTION

Recent research in deep reinforcement learning has shown
significant progress in strategic decision-making tasks, par-
ticularly in board games. Algorithms such as AlphaZero [1]
and MuZero [2] have demonstrated superhuman performance
by combining Monte Carlo Tree Search (MCTS) with deep
neural networks. Othello, also known as Reversi, is a well-
known board game that has attracted various research efforts
aiming to surpass human expert-level performance. However,
these models are trained in static environments and require
complex architectures to achieve high performance. Conse-
quently, they exhibit limitations in generalizing to dynamic
board constraints such as varying board sizes, blocked cells,
and restricted inference time. FastOthelloNet is designed and
trained for robust generalization to dynamic board constraints
through self-play in randomized board conditions. The en-
vironment configuration is randomized at the beginning of
each episode. During training, parameters such as board size
((6× 6), (8× 8)), the placement of blocked cells, and a strict
inference time limit (10 seconds) are varied. This diversity
encourages the emergence of strategies that are not overfitted
to a specific layout or rule set. To ensure computational
efficiency under varying spatial dimensions, FastOthelloNet
adopts a lightweight convolutional architecture with depthwise
separable convolutions. Instead of explicitly modeling tran-
sition dynamics, the model achieves generalization by being
exposed to a broad distribution of gameplay conditions during
training.

II. BACKGROUND AND RELATED WORK

A. MCTS-based Self-Play Learning
AlphaZero [1] demonstrated that reinforcement learning

agents can attain expert-level performance in games such as
Chess, Shogi, and Go through self-play, without the need
for expert demonstrations or handcrafted rules. This approach
integrates a deep residual network with MCTS, where the
network is trained using data collected from tree-guided sim-
ulations. Policy targets are derived from search visit distribu-
tions, while value targets reflect the final game outcome from
the agent’s perspective. A composite loss function is used to
update the shared network by combining both objectives.

Expanding upon this foundation, MuZero [2] introduced a
generalized framework that does not require access to the true
environment dynamics. Instead of modeling the environment
explicitly, MuZero jointly learns a latent dynamics model
alongside the policy and value networks. This enables the
agent to perform planning through internal representations of
state transitions and rewards, showing strong performance in
visually complex domains such as Atari.

While both AlphaZero and MuZero have achieved im-
pressive results, these methods typically operate under the
assumption of a fixed and fully observable environment during
training. Key aspects such as board dimensions, state repre-
sentations, and action spaces are held constant. As a result,
their ability to adapt to novel structures or modified gameplay
mechanics remains limited.

B. Toward Generalization and Environmental Diversity
Recent studies have highlighted the importance of gener-

alization in reinforcement learning. EfficientZero [3] extends
MuZero with improved data efficiency but remains limited
to single-environment configurations. DreamerV3 [4] achieves
strong generalization in continuous control domains through
the use of a world model with symlog targets and long-horizon
planning. However, these approaches primarily address visu-
ally or physically complex environments rather than structured,
rule-based games.

In contrast, research in procedural and open-ended rein-
forcement learning suggests that environmental diversity dur-
ing training improves agent robustness. The ProcGen bench-
mark [5], for instance, evaluates generalization using procedu-
rally generated levels, where agents benefit from architectural
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invariance or population-based training. Gato [6] explores
multi-task learning across modalities, though its performance
in combinatorial games remains limited.

The present work builds on these insights by focusing
on symbolic environments with discrete action spaces and
rigid rules. Variation in board size and playable regions is
introduced within the Othello domain to induce generalization,
without relying on learned world models or extensive data
augmentation.

C. Othello and Previous Approaches
Othello, also known as Reversi, has been widely used as

a benchmark for evaluating game-playing algorithms. Early
systems relied on minimax search with handcrafted heuristics
or pattern-based evaluation functions, embedding strategic
knowledge directly into the evaluation process and focusing
on exhaustive lookahead under a fixed rule set.

With the rise of deep reinforcement learning, AlphaZero-
style methods have been applied to Othello using self-play
and neural network-guided Monte Carlo Tree Search. These
models have demonstrated strong performance on the stan-
dard 8 × 8 board, often surpassing traditional search-based
approaches in fixed configurations [7], [8].

Nevertheless, most implementations remain constrained to
static environments with fixed board geometry and determin-
istic rules. Variants involving spatial constraints or altered
board structures are generally not considered. As a result,
trained agents frequently fail to generalize when confronted
with changes such as different board sizes or blocked regions.

The proposed approach addresses this limitation by intro-
ducing environmental variation during training. Each episode
features a randomized board size and may include unplayable
cells that disrupt standard tactics. This exposure to structural
diversity enables the agent to learn adaptable policies without
requiring retraining or environment-specific adjustments.

III. PROPOSED METHOD

The proposed method integrates MCTS with a neural policy
and value network. Learning is performed through self-play
over a distribution of randomized Othello environments. The
key objective is to promote generalization by exposing the
agent to diverse spatial constraints during training. The neural
network architecture, FastOthelloNet, is designed to maintain
efficiency and robustness across varying board sizes and
configurations.

A. Randomized Othello Environment
A family of Othello environments is defined by two vari-

ables: board dimension N × N and blocked cell ratio r.
Blocked cells are permanently unplayable and excluded from
the valid action space. Prior to each episode, the board size
N is sampled from a predefined range (e.g., 6 to 8), and a
proportion of cells determined by r are randomly selected as
blocked. The initial stone placement is preserved to maintain
game validity. Training under these varying configurations
enables the agent to adapt its policy to dynamic topologies
and variable action spaces.

B. FastOthelloNet Architecture

FastOthelloNet is a lightweight Convolutional Neural Net-
work (CNN) tailored for spatially structured games such as
Othello. The network receives a two-channel board encoding
as input and outputs: (1) a policy distribution over all board
positions, and (2) a scalar value estimating the expected game
outcome from the current state.

To support varying board sizes (e.g., 6×6, 8×8), the model
is implemented as a fully convolutional network, containing
no layers that assume fixed input dimensions. At the core of
the architecture are depthwise separable convolutions, which
decouple spatial and channel-wise operations. This design sig-
nificantly reduces the number of parameters and computational
cost compared to standard convolutions.

The model begins with a 3 × 3 depthwise convolution,
followed by a pointwise convolution and ReLU activation.
Multiple such blocks are stacked to form the network back-
bone. From the final feature map, two output heads are derived:

• Policy Head: A 1 × 1 convolution projects the feature
map to a set of logits over the board grid. A softmax
function is applied to produce a probability distribution
over possible actions.

• Value Head: A global average pooling is applied across
spatial dimensions, followed by a fully connected layer
with tanh activation to produce a scalar value in the range
[−1, 1].

This architecture is specifically designed for fast inference
during MCTS rollouts, where each model query must complete
within a predefined computational budget. In the experimental
setup, the total inference time for an entire game is constrained
to a 10-second time limit, including all neural network eval-
uations performed during MCTS. This constraint reflects the
demands of time-sensitive applications and stands in contrast
to large AlphaZero-style architectures that require substantial
computational resources. FastOthelloNet enables search-based
reinforcement learning in resource-constrained or embedded
environments.

C. Monte Carlo Tree Search for Decision Making

Actions are selected using MCTS, which integrates the
structure of the search tree with predictions from the neural
network. Each node in the tree corresponds to a specific game
state, and each edge represents a possible action leading to a
successor state.

The search begins at the root node, where the algorithm
balances exploitation and exploration to select actions. Ex-
ploitation favors actions with high value estimates, while
exploration encourages visits to less-explored actions. This
balance is achieved using the Predicted Upper Confidence
bound applied to Trees (PUCT) formula [1].

During the selection phase, each child node is evaluated
using an upper confidence bound:

U(s, a) = cPUCT · P (s, a) ·
√∑

b N(s, b)

1 +N(s, a)
(1)
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Fig. 1: FastOthelloNet architecture for value and policy prediction. The model uses depthwise separable convolutions to reduce
computation. A fully convolutional backbone handles variable board sizes, followed by a policy head and a value head.

Here, P (s, a) is the prior probability from the policy net-
work, N(s, a) is the visit count for action a at state s, and
cPUCT is a constant that controls the level of exploration.

At each step, the child node with the highest score, com-
puted as Q(s, a)+U(s, a), is selected. Here, Q(s, a) represents
the mean value of prior simulations, and U(s, a) is the explo-
ration term defined in (1). This selection is applied recursively
until an unexpanded node is reached.

At the leaf node, the selected move is applied to advance
the environment, yielding a new game state. The neural net-
work then evaluates this state, producing a policy distribution
over legal actions and a scalar value estimating the expected
outcome.

These predictions are stored in the expanded node: the
policy serves as a prior for future expansions, and the value
is treated as the simulation result. During backpropagation,
all nodes along the traversal path are updated. For each edge,
the visit count N(s, a) is incremented, and the value estimate
Q(s, a) is updated via incremental averaging.

This process is repeated for a fixed number of simulations,
refining action evaluations at the root. During training, actions
are sampled from the visit count distribution to encourage
exploration; during evaluation, the action with the highest visit
count is selected as the final move.

D. Training Pipeline

The training process follows a repeated two-stage cycle:
self-play data generation and neural network parameter up-
dates.

In the self-play stage, the agent plays games against itself
using MCTS guided by the neural network. At each step, the
following elements are recorded: the board state, the MCTS-
derived policy (from visit counts), and the final game outcome.
These form training tuples consisting of a board state tensor,
a target policy distribution, and a scalar game result.

After accumulating a sufficient number of games, the train-
ing stage begins. The neural network is optimized to predict
both the policy and value targets. The training objective
consists of two loss terms.

The first loss term is the policy loss, defined as the cross-
entropy between the MCTS visit count distribution and the
network’s predicted policy. For a given state s, it is computed
as:

Lpolicy(s) = −
∑
a

πa log p(a|s) (2)

Here, πa is the normalized visit count for action a, reflecting
how frequently it was selected during MCTS. The term p(a|s)
denotes the predicted probability for action a. This loss
encourages the network to imitate the MCTS decision pattern.

The second term is the value loss, defined as the mean
squared error between the predicted value and the actual game
outcome:

Lvalue(s) = (v(s)− z)
2 (3)

In this expression, v(s) is the value predicted by the
network, representing the estimated outcome from state s. The
ground-truth result z is set to +1 for a win, −1 for a loss, and
0 for a draw.

The total loss combines both objectives:

L(s) = Lpolicy(s) + Lvalue(s) (4)

The network is trained via gradient-based optimization,
using either stochastic gradient descent or the Adam optimizer.
Gradients are computed over mini-batches of training tuples
collected from self-play.

To promote generalization, the training environment is pro-
gressively made more challenging by varying the board size
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and the ratio of blocked cells. These variations force the agent
to adapt to diverse spatial structures.

Throughout training, inference efficiency is preserved. The
FastOthelloNet architecture maintains low computational over-
head, enabling real-time decision-making under strict time
constraints. This training pipeline supports effective learning
in resource-constrained settings while achieving robust gener-
alization performance.

IV. EXPERIMENTS

The experiments were designed to evaluate the gener-
alization capability of the proposed method across diverse
board configurations. The assessment focuses on both absolute
performance and adaptability to previously unseen structures.

A. Experimental Setup

The agent was trained using self-play reinforcement learn-
ing with MCTS. Each self-play episode was initialized on a
randomized Othello board. The board size was sampled from
either 6× 6 or 8× 8. For the 8×8 partial board, four blocked
cells were fixed at predefined positions, while the 6× 6 board
contained no blocked cells.

B. Training and Evaluation Procedure

Algorithm 1 Training and Evaluation Pipeline

1: Initialize FastOthelloNet weights θ
2: while not converged do
3: for each self-play game do
4: Sample board size N ∈ {6, 8}
5: Initialize environment with randomized board
6: while game not over do
7: Use MCTS(θ) to select action a from state s
8: Store (s, π) from MCTS statistics
9: Play action a to advance environment

10: end while
11: Assign final outcome z to all stored states
12: Add (s, π, z) to training buffer
13: end for
14: Update θ on sampled (s, π, z) using gradient descent
15: end while
16: for board type ∈ {standard, small, partial} do
17: for opponent ∈ {random, greedy, corner, positional}

do
18: Play evaluation matches using MCTS(θ)
19: Record win rate and tournament rank
20: end for
21: end for

C. Evaluation

The trained agent was tested against four rule-based oppo-
nents, with evaluations conducted separately on three board
configurations as illustrated in Figure 2.

• 8×8 Standard – The full Othello board without any
blocked cells, representing the classic game setup.

• 6×6 Small – A smaller board with fewer playable cells,
requiring tighter spatial strategies.

• 8×8 Partial – A standard-sized board with four blocked
cells in fixed positions, introducing asymmetry and spatial
constraints.

(a) 8×8 Standard Board

(b) 6×6 Small Board

(c) 8×8 Partial Board

Fig. 2: Examples of board configurations used in evaluation:
standard, small, and partial (with blocked cells).

The rule-based agents used in the evaluation were:
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• Random – Uniform random action selection.
• Greedy – Selects the move that flips the most discs

immediately.
• Corner – Prioritizes available corner moves.
• Positional – Uses a static positional weight table.
Round-robin tournaments were conducted with varying

numbers of games. For each evaluation, the win rate against
each baseline agent, tournament ranking, and overall average
performance metrics were recorded.

V. RESULTS

The agent’s performance is evaluated using two metrics:
win rate against rule-based agents and average tournament
rank across different board configurations. These metrics are
tracked as the number of self-play training games increases.
All evaluations are conducted under a strict constraint: the
total inference time per game must not exceed 10 sec-
onds, ensuring practical deployability in real-time settings.
Notably, the same trained model is evaluated across all board
types—8×8 standard, 6×6 small, and 8×8 partial—without
any retraining or architectural modification, demonstrating
robustness and generalization across diverse environments.

Fig. 3: Win rate over training games on each board type.
Average win rate shown in bold.

Fig. 4: Tournament rank over training games. Lower rank is
better. Average rank shown in bold.

Figure 3 illustrates the evolution of win rate throughout
training. On the 8×8 standard board, the agent exhibits steady
improvement, reaching a final win rate of 81.3% after 200,000
self-play games. This strong performance is attributed to the
board’s frequent appearance during training. On the 6 × 6
board, learning is slower and less stable in the early stages,
likely due to shorter game lengths that increase the impact of
individual moves. Nevertheless, the agent adapts over time,
achieving a win rate of 75.0% by the end of training. On
the 8 × 8 partial board—with four fixed blocked cells—the
agent demonstrates consistent progress, reaching 75.0% after
200,000 games, indicating its ability to handle asymmetric and
irregular board structures.

Figure 4 shows the agent’s tournament rankings during
training. On the standard 8 × 8 board, the agent frequently
maintains rank 1 in early stages. However, performance tem-
porarily declines to ranks 2 or 3 between 100,000 and 180,000
games, followed by partial recovery in later stages.The 6× 6
board exhibits the greatest fluctuation in performance, with
rankings ranging from 1 to 5. Early training phases show
instability, likely due to the reduced game length increasing the
strategic impact of individual moves. Despite this, the agent
improves in later stages, frequently achieving rank 1 after
90,000 games. On the 8 × 8 partial board, which includes
blocked cells, the ranking trend is more stable. Following a
noisy initial phase, the agent steadily improves, consistently
attaining rank 1 from approximately 130,000 games onward.
The magenta dashed line in Figure 4 represents the average
tournament rank across all board types. While it fluctuates
between 1.3 and 4.3 during early training, it converges to
1.0 by the end. This convergence demonstrates the agent’s
increasing generalization capability across structurally diverse
environments, enabling it to outperform rule-based opponents
across all configurations.

These results confirm that the proposed training pipeline,
which relies on sampling from a diverse distribution of
randomized environments, effectively produces policies that
generalize across board variations. In particular, the ability of
a single unified model to perform robustly on all three board
types(standard, small, and partially blocked)without any ar-
chitectural or parameter modification highlights the generality
and stability of the learned policy.

In contrast to rule-based agents, which depend on fixed
heuristics and often fail under altered board geometries, the
learned agent adapts dynamically. It identifies board specific
opportunities while maintaining general strategies for control,
mobility, and disc flipping. All evaluations were conducted
under a strict inference constraint, requiring each game to
complete within a 10 second total decision time budget.
Despite this limitation, the agent consistently achieved real-
time performance, indicating its suitability for interactive and
embedded applications.

VI. CONCLUSION

This work presents a generalized self-play reinforcement
learning framework for Othello that achieves robust gener-
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alization across diverse board configurations. In contrast to
conventional approaches that train agents in a single, fixed en-
vironment, the proposed method produces a single neural agent
capable of adapting to multiple game variants—including dif-
ferent board sizes and blocked cell layouts—without requiring
retraining or architectural modifications.

The proposed agent integrates MCTS with a lightweight
convolutional network, FastOthelloNet, and is trained exclu-
sively through self-play in a distribution of randomized envi-
ronments. This setup enables the model to acquire transferable
strategies that are not specific to any single configuration,
thereby promoting strong generalization. The trained agent
consistently outperforms rule-based opponents across three
board types: standard, small, and partially blocked.

Importantly, the model operates under a strict real-time
constraint: the total inference time per game is limited to 10
seconds, demonstrating the practical viability of the proposed
method for interactive applications.

The findings demonstrate that AlphaZero-style architectures
can be extended to support generalization without explicit
environment modeling, in contrast to methods such as MuZero.
When trained on a sufficiently diverse distribution and com-
bined with efficient planning, even compact models can learn
robust and high-performing policies. This work provides evi-
dence for the feasibility of reinforcement learning agents that
are not only strong, but also flexible, adaptive, and efficient
across structurally diverse tasks.

VII. FUTURE WORK

This study opens several directions for future research.
(1) Extension to Other Games. The proposed training

paradigm can be extended to other board games and envi-
ronments with structural variability, such as dynamic grid
sizes, obstacles, or rule changes. Generalization across such
variations in Othello lays the foundation for agents capable
of adapting to a broader class of strategic games, including
Hex, Connect Four, or turn-based video games. These exten-
sions would further evaluate the agent’s ability for structural
abstraction and transferable decision-making [5], [9].

(2) Integration with World Models. While the current
approach relies on MCTS and model-free policy learning,
integrating latent dynamics models presents a promising di-
rection. Combining this generalization-driven training with
world model approaches such as Dreamer [4], [10], [11] could
enable imagined rollouts in latent space, improving sample
efficiency and planning depth. Additionally, generalist models
like Gato [6] offer a framework for unifying vision, language,
and control via transformer-based architectures. Such hybrid
agents may reduce reliance on explicit search while main-
taining adaptability under diverse environments and limited
computational resources.
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