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Abstract—Sleep stage classification is essential for diagnosing
sleep disorders, but traditional polysomnography (PSG) is time-
consuming and labor-intensive and subject to inter-rater variabil-
ity, limiting its reliability. We propose a self-supervised learning
(SSL) framework that integrates the Superlet Transform (SLT),
offering high-resolution time-frequency analysis, with a Masked
Autoencoder (MAE) architecture. Single-channel EEG signals
(i.e., Fpz-Cz) from the Sleep-EDF dataset were transformed into
Superlet scalograms and used for masked reconstruction pre-
training. Our method is the first to combine Superlet with MAE
for EEG representation learning, enabling robust feature extrac-
tion from unlabeled data. Experimental results show that the
proposed approach outperforms conventional transforms such as
Short-Time Fourier Transform (STFT) and Continuous Wavelet
Transform (CWT), achieving state-of-the-art performance in
sleep staging. These findings highlight the potential of Superlet-
based SSL for scalable and accurate sleep analysis. The source
code is available at https://github.com/chajy1212/Superlet-MAE

Index Terms—superlet, masked autoencoder, self-supervised
learning, electroencephalography, automatic sleep staging

I. INTRODUCTION

Sleep is an essential biological process for both mental and
physical recovery, as well as for maintaining physiological
homeostasis [1]. Despite its importance, a large portion of the
population suffers from sleep disorders [2]. Polysomnography
(PSG) is widely used in clinical practice for accurate diagnosis
and assessment [3]. PSG records a wide range of physiological
signals during sleep, including electroencephalography (EEG),
electrooculography, electromyography, and electrocardiogra-
phy. These signals are manually annotated into sleep stages
by experts, following guidelines such as those provided by the
American Academy of Sleep Medicine (AASM) [4]. However,
manual scoring is labor-intensive, time-consuming, and subject
to inter-rater variability, which can compromise the reliability
of the diagnosis [5].

To address these limitations, many studies have explored
deep learning-based approaches for automatic sleep stage

classification [6]–[8]. In particular, recent research has increas-
ingly focused on using only single-channel EEG signals to
enhance usability and reduce hardware complexity [8]–[10].
Notable models such as DeepSleepNet [8], AttnSleep [9], and
SleepExpertNet [10] employ various architectures—including
convolutional neural networks, long short-term memory net-
works, and Transformers—to learn temporal and frequency-
related features from EEG signals. However, since these
models are based on supervised learning, they require large-
scale labeled datasets and often suffer from poor generalization
to unseen data [5].

In response to these challenges, self-supervised learning
(SSL) has emerged as a promising alternative [11]. SSL
enables the learning of meaningful representations without
the need for labeled data and is typically divided into two
major paradigms: contrastive learning [12], [13] and masked
prediction [14]. This approach is particularly well-suited for
applications like sleep EEG analysis, where large amounts of
data can be collected with relative ease, but labeling is costly
and labor-intensive. Indeed, several studies have explored con-
trastive learning on single-channel EEG data and demonstrated
its potential [15]–[17]. However, the performance of these
methods is often unstable due to their sensitivity to EEG data
augmentation strategies and backbone network architectures.
Moreover, studies utilizing masked prediction in this domain
remain relatively scarce [14], [18].

In this study, we propose the first SSL framework that
integrates Superlet [19]—a method capable of high-resolution
time-frequency representation (TFR) of EEG signals—with the
Masked Autoencoder (MAE) architecture. While prior studies
have primarily employed traditional transforms such as the
Short-Time Fourier Transform (STFT) [20] or the Continuous
Wavelet Transform (CWT) [21], Superlet achieves superior
time and frequency resolution simultaneously by adaptively
combining wavelets of varying orders. By using Superlet
scalograms as input representations to MAE, our approach
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enables more fine-grained and generalizable representation
learning from unlabeled sleep EEG data.

II. METHODS

In this study, we propose a SSL framework that integrates
Superlet scalograms with a MAE architecture to effectively
capture the multi-scale temporal and frequency dynamics of
single-epoch EEG signals. Our objective is to enable the model
to learn meaningful representations of sleep EEG by capturing
its complex time-frequency patterns in a fine-grained and
generalizable manner. This section describes the dataset used,
the Superlet transformation method, the MAE architecture, and
the evaluation procedure in detail.

A. Dataset

This study utilizes the Sleep Cassette (SC) subset of the
Sleep-EDF Expanded dataset (Sleep-EDFX) [22], provided
by PhysioNet. The SC subset includes PSG recordings from
153 healthy adult subjects, whose ages range from 25 to 101
years. Although the PSG dataset contains a wide range of
physiological signals—including EEG Fpz-Cz and EEG Pz-
Oz channels, horizontal electrooculography, and submental
electromyography—this study focuses exclusively on the EEG
Fpz-Cz channel.

The EEG signals were sampled at 100 Hz and segmented
into 30-second epochs based on manual annotations provided
by expert sleep scorers. The original annotations followed
the Rechtschaffen and Kales sleep scoring manual and in-
cluded eight sleep stages: Wake, N1, N2, N3, N4, REM,
UNKNOWN (?), and MOVEMENT. Following the American
AASM guidelines [4], the N3 and N4 stages were merged into
a single ‘N3’ category, and epochs labeled as UNKNOWN and
MOVEMENT were excluded. As a result, the final dataset
used in this study consists of five sleep stages: Wake, N1, N2,
N3, and REM.

B. Time-Frequency Representation with Superlet

To generate TFR of EEG signals, we employed the Superlet
Transform (SLT) [19]. Superlet adaptively combines wavelets
of varying orders depending on frequency, offering signifi-
cantly higher resolution in both the time and frequency do-
mains compared to traditional methods such as STFT [20] and
CWT [21], and recent biomedical applications that leverage
Superlet for noise-sensitive signal analysis [23]. This approach
is particularly effective in mitigating resolution degradation at
higher frequency bands. By increasing the number of Morlet
wavelets [24], Superlet compensates for the limitations of
single wavelets and alleviates the inherent trade-off between
temporal and spectral resolution. The core component of SLT
is the complex-valued Morlet wavelet, which is defined as:

ψf,c(t) =
1

Bc

√
2π

e
− t2

2B2
c ej2πft

where f is the central frequency (Hz), c is the number of
cycles in the wavelet, and Bc is the standard deviation in the
time domain, defined as:

Bc =
c

ksdf

Here, ksd is a scaling factor, typically set to 5, which mod-
ulates the time spread of the wavelet based on its frequency
and cycle count.

SLT generates a high-resolution time-frequency scalogram
by applying wavelets of various orders to the input signal and
combining their complex-valued responses using a geometric
mean. This results in a more accurate and stable representation
of EEG dynamics across multiple frequency scales.

In our study, the base number of cycles was set to 3,
and the wavelet order varied from 1 to 30. A bandpass filter
ranging from 0 to 40 Hz was applied to the input EEG signals
to suppress irrelevant noise while preserving physiologically
meaningful frequency bands. The resulting time-frequency
scalogram was log-scaled, normalized, and resized into a
single-channel image of size (30, 100), which was then used
as input to the MAE model.

C. Masked Autoencoder Architecture

In this study, we adopt a MAE [14] architecture built upon
the Vision Transformer (ViT) [25] backbone. The pretraining
process is carried out in a self-supervised manner. The input
data is a single-channel 2D scalogram of size (1, 30, 100),
which is divided into non-overlapping patches of size (5, 5),
resulting in a total of 120 patches. Each patch is flattened and
passed through a linear projection layer to obtain a 256 dim
latent vector. A fixed two-dimensional sine-cosine positional
encoding is added to each patch embedding to retain spatial
information.

Among the 120 patches, 75% are randomly masked, and
only the remaining 25% of the patch embeddings are fed into
the encoder. The encoder consists of 20 Transformer blocks,
each comprising an 8-headed multi-head self-attention layer
and a MLP layer. A learnable class token is prepended to the
sequence of visible patch embeddings, and the encoder outputs
a latent representation based solely on the unmasked patches.

The decoder is designed with a shallower structure than
the encoder and consists of a total of 12 transformer blocks
with an embedding dimension of 128. The encoder output
is linearly projected to match the decoder’s input dimension.
A learnable mask token is inserted at the masked positions,
and positional encodings are added before feeding the full
sequence into the Transformer decoder. The decoder is trained
to reconstruct the full patch sequence, with predictions made
on a per-patch basis. The reconstruction loss is computed
only over the masked patches and is defined as the mean
squared error between the decoder outputs and the original
patch inputs. This architecture enables the model to learn
semantically meaningful representations by inferring the full
input from partial observations.

During pretraining, we use the AdamW optimizer with a
learning rate of 0.001. The model is trained for a total of 300
epochs. A summary of the architecture and key hyperparam-
eters is provided in Table I.
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TABLE I
MODEL AND TRAINING HYPERPARAMETERS

Parameter Value
Input Size (30, 100)
Patch Size (5, 5)

Input Channel 1
Masking Ratio 0.75

Epoch 300
Batch Size 512

Accumulation Step 1
Encoder Dim 256

Encoder Depth 20
Encoder Head 8
Decoder Dim 128

Decoder Depth 12
Decoder Head 8

Optimizer AdamW
Learning Rate 1e-3

D. Evaluation Schema

After the self-supervised pretraining phase, the encoder
was frozen, and a 2-layer MLP classifier was trained using
the latent representation extracted from the encoder’s class
token. This linear probing procedure was used to evaluate the
classification performance of the representations learned by
the encoder. During this stage, only the classifier weights were
updated, while the encoder remained fixed. The classifier was
optimized using cross-entropy loss.

Model performance was evaluated using three commonly
adopted metrics: Accuracy (ACC), Macro F1 Score (MF1),
and Cohen’s Kappa (Kappa). Each metric was computed as
follows:

ACC =

∑C
c=1 TP c

N

where TP c is the number of true positives for class c, and N
is the total number of test epochs.

MF1 =

∑C
c=1 F1c
C

where F1c is the F1 score for class c, and C is the total
number of sleep stages.

Kappa =
po − pe
1− pe

where po is the observed agreement, and pe is the expected
agreement by chance.

To ensure the generalizability and reliability of the results,
31 subjects were designated as a fixed test set, and 5-fold
group subject cross-validation [26] was conducted on the
remaining 122 subjects. All experiments were performed using
the same random seed, model architecture, training parameters,
and data split strategy to ensure consistency and reproducibil-
ity.

III. RESULTS

A. Comparison of Time-Frequency Representation Methods

TABLE II
PERFORMANCE COMPARISON OF MAE

USING DIFFERENT TIME-FREQUENCY REPRESENTATIONS

Transform Type Accuracy Macro F1 Score Cohen’s Kappa
Superlet 75.87% ± 1.39 63.23% ± 1.74 0.64 ± 0.02

STFT 74.81% ± 1.27 61.74% ± 1.76 0.62 ± 0.02
CWT 75.45% ± 1.42 62.84% ± 1.16 0.63 ± 0.02

* STFT: Short-Time Fourier Transform analysis; CWT: Continuous Wavelet
Transform

Table II summarizes the linear evaluation performance of
MAE models trained using different TFR methods: Superlet,
STFT, and CWT. The Superlet-based MAE model consistently
achieved the highest scores across all three-evaluation met-
rics—ACC of 75.87% ± 1.39, MF1 of 63.23% ± 1.74, and
Kappa of 0.64 ± 0.02.

In particular, the Superlet model outperformed the STFT
model by approximately 1.06%, and the CWT model by
around 0.42% in terms of ACC. It also yielded the highest
average values for MF1 and Kappa, along with relatively
smaller standard deviations, suggesting more consistent and
robust classification performance.

B. Comparison with Other Self-supervised Methods

TABLE III
COMPARISON WITH OTHER SSL METHODS

FOR LINEAR EVALUATION USING SINGLE-EPOCH EEG

Model Accuracy Macro F1 Score Cohen’s Kappa
Ours 75.87% ± 1.39 63.23% ± 1.74 0.64 ± 0.02

MAEEG [18] 72.29% ± 4.56 62.58% ± 6.02 0.62 ± 0.08
TS-TCC [27] 69.27% ± 8.15 54.09% ± 18.89 0.55 ± 0.15
BENDR [15] 70.73% ± 8.57 62.04% ± 8.03 0.60 ± 0.11

Table III compares the performance of the proposed
Superlet-based MAE model with representative SSL methods
for single-epoch EEG. The proposed model outperformed
all baselines in all three evaluation metrics. Specifically, our
model achieved an ACC improvement of approximately 3.58%
over MAEEG [18], 6.6% over TS-TCC [27], and 5.14% over
BENDR [15]. In terms of MF1 and Kappa, the proposed model
also recorded the highest average scores among all compared
methods, along with relatively low standard deviations, indi-
cating more consistent and reliable performance.

These results demonstrate that Superlet scalograms effec-
tively capture the diverse time-frequency characteristics of
EEG signals, facilitating robust and generalizable represen-
tation learning in a self-supervised framework.

C. Reconstruction Visualization

Figure 1 illustrates the reconstruction capability of the
MAE model when 75% of the input patches are masked.
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(C)

(A)

(B)

Fig. 1. Visualization of MAE reconstruction performance (mask ratio = 0.75). (A) original scalogram, (B) masked scalogram, (C) reconstructed scalogram.

Figure 1(A) shows the original Superlet scalogram used as
input, while Figure 1(B) shows the scalogram with randomly
applied masking. Figure 1(C) shows the reconstructed output
generated by the model.

Despite the high masking ratio, the reconstructed scalogram
retains the key time-frequency features observed in the original
input. The overall structure and patterns remain largely intact,
indicating that the model successfully inferred and recovered
the missing information.

These results highlight the effectiveness of MAE in captur-
ing the temporal and spectral patterns of EEG signals, even
when substantial portions of the input are occluded.

D. Hypnogram

The sleep stage classification results for subject #SC4632E0
are visualized in Figure 2. Figure 2(A) shows the ground-truth
hypnogram based on manual annotations by sleep experts,
illustrating the temporal transitions and durations of each sleep
stage.

Figure 2 (B) shows the hypnogram predicted by the pro-
posed model. It closely mirrors the structure and transition
patterns observed in the expert-labeled hypnogram, indicating
that the model effectively captures the overall sleep architec-
ture. Figure 2 (C) shows the softmax probabilities output by
the model, stacked by sleep stage over time. In most segments,
the model shows a clear preference for a single class, reflecting
high confidence in its predictions. However, during transitional
periods between N1 and REM stages, multiple classes show
similarly elevated probabilities, suggesting increased uncer-
tainty. This observation is consistent with previous studies,
which have reported that these stages are inherently ambiguous
and often yield low inter-rater agreement even among human
experts [5], [28].

These results demonstrate that the proposed model is ca-
pable of effectively learning and representing the temporal
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Fig. 2. Visualization of sleep stage classification for subject #SC4632E0
in Sleep-EDFX. (A) ground-truth hypnogram based on manual annotations
by sleep experts, (B) predicted hypnogram generated by the proposed MAE
classifier, (C) softmax probability distribution across sleep stage over time.

dynamics of sleep architecture using only single-channel EEG
data.

IV. DISCUSSION

In this study, we proposed the first SSL framework that
combines Superlet TFRs with a MAE architecture to learn ef-
fective representations from sleep EEG signals. Experimental
results demonstrated that the Superlet-based MAE consistently
outperformed models utilizing conventional time-frequency
methods such as STFT and CWT across all evaluation met-
rics. These findings suggest that the high-resolution spectral
features provided by Superlet deliver richer information during
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training, enabling the encoder to learn more expressive repre-
sentations. Notably, these performance gains were achieved us-
ing only single-channel EEG inputs, underscoring the practical
impact of the Superlet representation on model effectiveness.

Compared with other SSL approaches such as BENDR [15],
TS-TCC [27], and MAEEG [18], the proposed method
achieved superior results. Specifically, it outperformed
BENDR by approximately 5.14%, TS-TCC by 6.6%, and
MAEEG by 3.58% in terms of ACC. It also achieved the
highest scores for both MF1 and Kappa metrics, demonstrating
the effectiveness of combining Superlet scalograms with the
MAE framework for the learning of EEG representation.

Traditional contrastive learning approaches are heavily
highly on data augmentation strategies [27]. In EEG analy-
sis, common augmentations include noise addition, jittering,
scaling, and masking can significantly affect performance
depending on their configuration [16]. This sensitivity often
limits the stability and reproducibility of contrastive learning
methods. In contrast, the MAE architecture mitigates these
limitations while still enabling robust and semantically rich
representation learning.

As shown in Figure 1, the model successfully preserved key
time-frequency patterns even when 75% of the input patches
were masked. Moreover, Figure 2 indicates that the highest
classification performance was obtained at a 75% masking
ratio, emphasizing the importance of an appropriate masking
strategy in MAE-based EEG representation learning.

To assess real-world generalizability, future studies should
incorporate EEG data collected under diverse clinical settings
and sensor configurations. Since this study was limited to
the Sleep-EDFX dataset, its cross-dataset adaptability remains
unverified. Additionally, the model’s robustness against noisy
EEG signals, such as those acquired in clinical or mobile en-
vironments, has not yet been evaluated. These aspects require
further investigation to ensure real-world applicability.

Although Superlet inherently provides rich and high-
resolution time-frequency information, we intentionally re-
duced the input resolution in this study to improve training
stability and computational efficiency. This downscaling may
have caused the loss of fine-grained features. In future work,
we plan to leverage the full spectral resolution of Superlet
representations to enable more powerful and comprehensive
representation learning.

Furthermore, the current framework is limited to static,
single-epoch analysis and cannot capture the temporal tran-
sitions between sleep stages. Incorporating temporal context
and modeling stage transitions using sequential or recurrent
structures will be an important future direction. Despite these
limitations, this study represents the first attempt to apply
high-resolution Superlet scalograms within a MAE-based SSL
framework for sleep EEG signals. It offers a new perspective
in EEG representation learning.

Future directions include expanding the method to multi-
channel EEG and other physiological signals (e.g., electroocu-
lography, electromyography), exploring cross-dataset transfer

learning, and developing multimodal MAE architectures with
improved generalizability and clinical utility.
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