
Agile Semantics Alignment over Fading Channel
via LoRA-based Fine-Tuning

Sang-Hyeok Kim, Joonhoe Koo, and Seung-Woo Ko
Inha University, Incheon, Korea

Email: shkim9151@gmail.com, jeremy0915@inha.edu, and swko@inha.ac.kr

Abstract—This paper proposes a communication and learning
framework to rapidly resolve semantics misalignment (SMA)
between a TX and an RX in dynamic fading channels. The
SMA arises from a mismatch in feature vector dimensions when
wireless channel quality degrades. Our approach is based on
a split-architecture semantic communication system, where the
transmitter (TX) uses principal component analysis (PCA) for
dimensionality reduction. The receiver (RX) then reconstructs
the transmitted feature vector and performs fine-tuning on its
pre-trained model using Low-Rank Adaptation (LoRA) to swiftly
adapt to the changing channel conditions. Experimental results
on a V2X testbed show that our method achieves significant
latency reduction compared to end-to-end training, while main-
taining stable and high accuracy compared to using a pre-trained
model without fine-tuning.

Index Terms—Semantic communication, fine-tuning, LoRA,
fading channels, V2X.

I. INTRODUCTION

Next-generation wireless networks will handle vast amounts
of multimodal data from applications like the Internet of
Things (IoT) and autonomous driving. Traditional bit-based
communication faces a communication bottleneck due to lim-
ited bandwidth and channel variations, leading to information
loss and latency [1]. To overcome this, semantic communica-
tion (SC), which focuses on conveying meaning rather than
just bits, has emerged as a key technology for the 6G era [2].

However, the quality of wireless channels constantly varies,
altering the feasible dimension of transmittable feature vectors.
This leads to a semantics misalignment (SMA) between the
dimension sent by the TX and the dimension expected by
the pre-trained model at the RX, drastically degrading task
success rates [3]. As visually demonstrated in Fig. 1, this
problem causes severe degradation in reconstructed images
when the encoder and decoder are trained under different
channel conditions or datasets. Retraining the entire model
for each dimensional change is infeasible due to high latency
and resource requirements.

To address this challenge, this paper proposes a low-latency
solution that maintains the integrity of the pre-trained model.
We introduce a framework that combines feature dimension
control at the TX with a rapid fine-tuning mechanism at the
RX, ensuring resilient and efficient communication in dynamic
channel environments.

II. SYSTEM MODEL AND PROBLEM DEFINITION

We consider a split-architecture SC system with a point-to-
point link between a single TX and RX. An input image is
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Fig. 2. Reconstructed images under different encoder-decoder training channels (1st and 2nd), and under different encoder-decoder training source data (3rd and
4th). Without SLF (1st and 3rd), off-diagonal images visualize the impact of semantics misalignment, which is fixed by SLF (2nd and 4th).

from the original sample xi at TXi due not only to the channel noise
but also to DECij that was not jointly trained with ENCij� if i �= j �.
The latter warrants the need to address the semantics misalignment
problem.

Task Specific Function. The RXj stores γj that utilizes x̂ij to
carry out a task-specific decision-making Task(x̂ij). We consider two
different tasks, source data sample reconstruction and the sample’s label
classification. For the reconstruction task, TRXij aims to minimize the
MSE, E[||xi − x̂ij ||2], between the source sample xi and the decoded
sample x̂ij . In this case, we have γj = ∅ and the structure of TRXij

boils down to the standard bipartite VQ-VAE, i.e., TRXij = [θi,φj ],
and Task(x̂ij) = DECij(ẑij) = x̂ij . On the other hand, for the clas-
sification task, we have γj �= ∅, and TRXij aims to maximize the
top-1 accuracy of the predicted label ŷij = Task(x̂ij), for the given
ground-truth label yi associated with xi.

III. SPLIT LEARNING WITH LAYER FREEZING

A. Motivation – Challenges in Semantics Alignment

Suppose that there are two independently pre-trained DeepJSCC
transceivers TRXi and TRXj with i �= j. The TXi of TRXi intends to
communicate with RXj of TRXj . This misaligned SC is unlikely to
be successful, in that TXi’s θi as well as RXj’s φj and γj are biased
towards their separate pre-trained environments, in terms of its source
data (i.e., Xi and Xj) as well as channel characteristics (i.e., εii and
εjj). Indeed, the off-diagonal examples in Fig. 2 show that SC fails due
to their dissimilarity in pre-trained environments such as channels and
source data.

To make TXi and RXj interoperable, a naïve solution is to re-train
a new transceiver TRXij = [θi,φj ,γj ] through communication be-
tween TXi and RXj . However, this incurs non-negligible additional
communication costs until training from scratch. Furthermore, it may
also violate data privacy, as it should share the local dataset Xi of TXi

with RXj at which the training loss is calculated by comparing RXj’s
output withXi; for instance, comparison with the original source sample
xi for reconstruction or the ground-truth label yi for classification.

Although our proposed SLF involves background model commu-
nication, i.e., TXi is downloading RXj’s DEC for fine-tuning and
uploading the fine-tuned DEC to David. This only communicates model
parameters without exchanging source data samples, at least more
privacy-preserving than other fine-tuning methods based on sample
exchanges. In fact, this coincides with federated learning (FL) [13],
a distributed learning algorithm exchanging only model parameters,
which has been widely advocated for its privacy-preserving advantage
over other distributed learning algorithms such as distributed stochastic
gradient descent that exchanges data samples.

Notwithstanding, with more intelligent receivers with high comput-
ing power, there are several attacks, such as model inversion and mem-
bership attacks, which can extract training data information from the
exchanged model parameters. Advanced FL algorithms often address
these privacy issues by applying differential privacy (DP) mechanisms
such as random noise injection to model parameters. Likewise, David
and/or Alice can additionally inject random noise into DEC before
and/or after fine-tuning up to a target DP level. Since investigating this
issue is beyond the scope of this work, we leave it for future work.

B. SLF for Aligning Semantics in Multi-User SC

Alternatively, to align semantics in multi-user SC, we propose a
novel fine-tuning method, termed SLF. SLF leverages SL [10] to divide
each transceiver into its encoder and decoder segments, followed by
exchanging and fine-tuning different combinations of these segments.
As visualized in Fig. 1, SLF operates in the following four steps.

❶ TXi downloads RXj model parameters [φj ,γj ]while measuring
SNRij under downlink channel (TXi ← RXj).

❷ TXi partially freezes the downloaded model parameters,
and locally fine-tunes a virtual transceiver TRXij =
[θi,Freeze�(φj),γj ] using Xi under an applying SNRij ,
yielding a fine-tuned virtual transceiver TRX�

ij = [θ�
i,φ

�
j ,γj ].

❸ TXi uploads the fine-tuned unfrozen model parameters, i.e., non-
zero elements of [φ�

j ]− [Freeze�(φj)], to RXj .
❹ TXi transmits the SR zij encoded using θ�

i, and RXj decodes
the received ẑij using [φ�

j ,γj ].
In ❷, the function Freeze�(·) freezes the �-th layers of φj with

� ∈ {0, 1, 2, . . . , L} counting from the last layer. This counting order
yields less performance degradation based on our experiments. The case
� = 0 implies that φj is entirely re-trained, which can be a benchmark
to our SLF algorithm.

The detailed process of SLF fine-tuning can be described by the loss
function of VQ-VAE [11] as follows:

L=�xi − x̂ij�2
2 + �ẑij − sg[z�ij ]�2

2 + αc�sg[ẑij ]− z�ij�2
2. (4)

The z�ij is the latent variable that before mapping to the codebook at
TXi. After being mapped to the codewords, it becomes zij . The ẑij is
SRs which are demodulated received signal and mapped to codewords
in RXj . In the local fine-tuning process, TXi applyPr(ck|ck�) tozij for
obtaining ẑij on its own. The termsαc is a constant hyper-parameter for
the codebook commitment loss, and sg[·] is the stop-gradient operator
for ensuring differentiability. For the classification task, the classifier
γj is separately pre-trained and frozen, and no additional loss term is
taken into account.
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Fig. 2. Reconstructed images under different encoder-decoder training channels (1st and 2nd), and under different encoder-decoder training source data (3rd and
4th). Without SLF (1st and 3rd), off-diagonal images visualize the impact of semantics misalignment, which is fixed by SLF (2nd and 4th).
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but also to DECij that was not jointly trained with ENCij� if i �= j �.
The latter warrants the need to address the semantics misalignment
problem.

Task Specific Function. The RXj stores γj that utilizes x̂ij to
carry out a task-specific decision-making Task(x̂ij). We consider two
different tasks, source data sample reconstruction and the sample’s label
classification. For the reconstruction task, TRXij aims to minimize the
MSE, E[||xi − x̂ij ||2], between the source sample xi and the decoded
sample x̂ij . In this case, we have γj = ∅ and the structure of TRXij

boils down to the standard bipartite VQ-VAE, i.e., TRXij = [θi,φj ],
and Task(x̂ij) = DECij(ẑij) = x̂ij . On the other hand, for the clas-
sification task, we have γj �= ∅, and TRXij aims to maximize the
top-1 accuracy of the predicted label ŷij = Task(x̂ij), for the given
ground-truth label yi associated with xi.

III. SPLIT LEARNING WITH LAYER FREEZING

A. Motivation – Challenges in Semantics Alignment

Suppose that there are two independently pre-trained DeepJSCC
transceivers TRXi and TRXj with i �= j. The TXi of TRXi intends to
communicate with RXj of TRXj . This misaligned SC is unlikely to
be successful, in that TXi’s θi as well as RXj’s φj and γj are biased
towards their separate pre-trained environments, in terms of its source
data (i.e., Xi and Xj) as well as channel characteristics (i.e., εii and
εjj). Indeed, the off-diagonal examples in Fig. 2 show that SC fails due
to their dissimilarity in pre-trained environments such as channels and
source data.

To make TXi and RXj interoperable, a naïve solution is to re-train
a new transceiver TRXij = [θi,φj ,γj ] through communication be-
tween TXi and RXj . However, this incurs non-negligible additional
communication costs until training from scratch. Furthermore, it may
also violate data privacy, as it should share the local dataset Xi of TXi

with RXj at which the training loss is calculated by comparing RXj’s
output withXi; for instance, comparison with the original source sample
xi for reconstruction or the ground-truth label yi for classification.

Although our proposed SLF involves background model commu-
nication, i.e., TXi is downloading RXj’s DEC for fine-tuning and
uploading the fine-tuned DEC to David. This only communicates model
parameters without exchanging source data samples, at least more
privacy-preserving than other fine-tuning methods based on sample
exchanges. In fact, this coincides with federated learning (FL) [13],
a distributed learning algorithm exchanging only model parameters,
which has been widely advocated for its privacy-preserving advantage
over other distributed learning algorithms such as distributed stochastic
gradient descent that exchanges data samples.

Notwithstanding, with more intelligent receivers with high comput-
ing power, there are several attacks, such as model inversion and mem-
bership attacks, which can extract training data information from the
exchanged model parameters. Advanced FL algorithms often address
these privacy issues by applying differential privacy (DP) mechanisms
such as random noise injection to model parameters. Likewise, David
and/or Alice can additionally inject random noise into DEC before
and/or after fine-tuning up to a target DP level. Since investigating this
issue is beyond the scope of this work, we leave it for future work.
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Alternatively, to align semantics in multi-user SC, we propose a
novel fine-tuning method, termed SLF. SLF leverages SL [10] to divide
each transceiver into its encoder and decoder segments, followed by
exchanging and fine-tuning different combinations of these segments.
As visualized in Fig. 1, SLF operates in the following four steps.
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zero elements of [φ�
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❹ TXi transmits the SR zij encoded using θ�
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the received ẑij using [φ�
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In ❷, the function Freeze�(·) freezes the �-th layers of φj with

� ∈ {0, 1, 2, . . . , L} counting from the last layer. This counting order
yields less performance degradation based on our experiments. The case
� = 0 implies that φj is entirely re-trained, which can be a benchmark
to our SLF algorithm.

The detailed process of SLF fine-tuning can be described by the loss
function of VQ-VAE [11] as follows:

L=�xi − x̂ij�2
2 + �ẑij − sg[z�ij ]�2

2 + αc�sg[ẑij ]− z�ij�2
2. (4)

The z�ij is the latent variable that before mapping to the codebook at
TXi. After being mapped to the codewords, it becomes zij . The ẑij is
SRs which are demodulated received signal and mapped to codewords
in RXj . In the local fine-tuning process, TXi applyPr(ck|ck�) tozij for
obtaining ẑij on its own. The termsαc is a constant hyper-parameter for
the codebook commitment loss, and sg[·] is the stop-gradient operator
for ensuring differentiability. For the classification task, the classifier
γj is separately pre-trained and frozen, and no additional loss term is
taken into account.
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Fig. 2. Reconstructed images under different encoder-decoder training channels (1st and 2nd), and under different encoder-decoder training source data (3rd and
4th). Without SLF (1st and 3rd), off-diagonal images visualize the impact of semantics misalignment, which is fixed by SLF (2nd and 4th).
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different tasks, source data sample reconstruction and the sample’s label
classification. For the reconstruction task, TRXij aims to minimize the
MSE, E[||xi − x̂ij ||2], between the source sample xi and the decoded
sample x̂ij . In this case, we have γj = ∅ and the structure of TRXij

boils down to the standard bipartite VQ-VAE, i.e., TRXij = [θi,φj ],
and Task(x̂ij) = DECij(ẑij) = x̂ij . On the other hand, for the clas-
sification task, we have γj �= ∅, and TRXij aims to maximize the
top-1 accuracy of the predicted label ŷij = Task(x̂ij), for the given
ground-truth label yi associated with xi.
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transceivers TRXi and TRXj with i �= j. The TXi of TRXi intends to
communicate with RXj of TRXj . This misaligned SC is unlikely to
be successful, in that TXi’s θi as well as RXj’s φj and γj are biased
towards their separate pre-trained environments, in terms of its source
data (i.e., Xi and Xj) as well as channel characteristics (i.e., εii and
εjj). Indeed, the off-diagonal examples in Fig. 2 show that SC fails due
to their dissimilarity in pre-trained environments such as channels and
source data.

To make TXi and RXj interoperable, a naïve solution is to re-train
a new transceiver TRXij = [θi,φj ,γj ] through communication be-
tween TXi and RXj . However, this incurs non-negligible additional
communication costs until training from scratch. Furthermore, it may
also violate data privacy, as it should share the local dataset Xi of TXi

with RXj at which the training loss is calculated by comparing RXj’s
output withXi; for instance, comparison with the original source sample
xi for reconstruction or the ground-truth label yi for classification.

Although our proposed SLF involves background model commu-
nication, i.e., TXi is downloading RXj’s DEC for fine-tuning and
uploading the fine-tuned DEC to David. This only communicates model
parameters without exchanging source data samples, at least more
privacy-preserving than other fine-tuning methods based on sample
exchanges. In fact, this coincides with federated learning (FL) [13],
a distributed learning algorithm exchanging only model parameters,
which has been widely advocated for its privacy-preserving advantage
over other distributed learning algorithms such as distributed stochastic
gradient descent that exchanges data samples.

Notwithstanding, with more intelligent receivers with high comput-
ing power, there are several attacks, such as model inversion and mem-
bership attacks, which can extract training data information from the
exchanged model parameters. Advanced FL algorithms often address
these privacy issues by applying differential privacy (DP) mechanisms
such as random noise injection to model parameters. Likewise, David
and/or Alice can additionally inject random noise into DEC before
and/or after fine-tuning up to a target DP level. Since investigating this
issue is beyond the scope of this work, we leave it for future work.

B. SLF for Aligning Semantics in Multi-User SC

Alternatively, to align semantics in multi-user SC, we propose a
novel fine-tuning method, termed SLF. SLF leverages SL [10] to divide
each transceiver into its encoder and decoder segments, followed by
exchanging and fine-tuning different combinations of these segments.
As visualized in Fig. 1, SLF operates in the following four steps.

❶ TXi downloads RXj model parameters [φj ,γj ]while measuring
SNRij under downlink channel (TXi ← RXj).

❷ TXi partially freezes the downloaded model parameters,
and locally fine-tunes a virtual transceiver TRXij =
[θi,Freeze�(φj),γj ] using Xi under an applying SNRij ,
yielding a fine-tuned virtual transceiver TRX�
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i,φ
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❸ TXi uploads the fine-tuned unfrozen model parameters, i.e., non-
zero elements of [φ�

j ]− [Freeze�(φj)], to RXj .
❹ TXi transmits the SR zij encoded using θ�

i, and RXj decodes
the received ẑij using [φ�

j ,γj ].
In ❷, the function Freeze�(·) freezes the �-th layers of φj with

� ∈ {0, 1, 2, . . . , L} counting from the last layer. This counting order
yields less performance degradation based on our experiments. The case
� = 0 implies that φj is entirely re-trained, which can be a benchmark
to our SLF algorithm.

The detailed process of SLF fine-tuning can be described by the loss
function of VQ-VAE [11] as follows:

L=�xi − x̂ij�2
2 + �ẑij − sg[z�ij ]�2

2 + αc�sg[ẑij ]− z�ij�2
2. (4)

The z�ij is the latent variable that before mapping to the codebook at
TXi. After being mapped to the codewords, it becomes zij . The ẑij is
SRs which are demodulated received signal and mapped to codewords
in RXj . In the local fine-tuning process, TXi applyPr(ck|ck�) tozij for
obtaining ẑij on its own. The termsαc is a constant hyper-parameter for
the codebook commitment loss, and sg[·] is the stop-gradient operator
for ensuring differentiability. For the classification task, the classifier
γj is separately pre-trained and frozen, and no additional loss term is
taken into account.
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Fig. 2. Reconstructed images under different encoder-decoder training channels (1st and 2nd), and under different encoder-decoder training source data (3rd and
4th). Without SLF (1st and 3rd), off-diagonal images visualize the impact of semantics misalignment, which is fixed by SLF (2nd and 4th).
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and Task(x̂ij) = DECij(ẑij) = x̂ij . On the other hand, for the clas-
sification task, we have γj �= ∅, and TRXij aims to maximize the
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yielding a fine-tuned virtual transceiver TRX�
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In ❷, the function Freeze�(·) freezes the �-th layers of φj with

� ∈ {0, 1, 2, . . . , L} counting from the last layer. This counting order
yields less performance degradation based on our experiments. The case
� = 0 implies that φj is entirely re-trained, which can be a benchmark
to our SLF algorithm.

The detailed process of SLF fine-tuning can be described by the loss
function of VQ-VAE [11] as follows:

L=�xi − x̂ij�2
2 + �ẑij − sg[z�ij ]�2

2 + αc�sg[ẑij ]− z�ij�2
2. (4)

The z�ij is the latent variable that before mapping to the codebook at
TXi. After being mapped to the codewords, it becomes zij . The ẑij is
SRs which are demodulated received signal and mapped to codewords
in RXj . In the local fine-tuning process, TXi applyPr(ck|ck�) tozij for
obtaining ẑij on its own. The termsαc is a constant hyper-parameter for
the codebook commitment loss, and sg[·] is the stop-gradient operator
for ensuring differentiability. For the classification task, the classifier
γj is separately pre-trained and frozen, and no additional loss term is
taken into account.

(b)

Fig. 1. Examples of image reconstruction results under SMA. (a) Mismatched
channel SNRs. (b) Different training datasets. This misalignment occurs
between the encoder and decoder [3].

Fig. 2. Reconstructed images of an MNIST digit (’5’) based on varying
numbers of PCA dimensions. The degradation in quality at lower dimensions
highlights the SMA challenge for a fixed RX model.

represented by a vector x ∈ Rdraw , which corresponds to the
dimension of the raw, uncompressed data (e.g., for a 28x28
MNIST image, draw = 784). To transmit this data efficiently,
the TX encoder compresses x into a lower-dimensional feature
vector z ∈ Rα. The dimension α is adaptively controlled
based on the real-time channel state. At the RX, the decoder
reconstructs the data x̂ ∈ Rdraw from z.

The subsequent classification model, with pre-trained
weights W , is designed to achieve high accuracy under good
channel conditions. This pre-training is performed on data that
has been reconstructed from an ideal, high-quality set of dpre
principal feaures, where dpre < draw (e.g., dpre = 200 for the
MNIST model in our experiments). The model is therefore
optimized for the rich information content associated with
this dpre dimension. The core challenge arises when poor
channel conditions force the transmission dimension α to be
much smaller than the model’s expected dimension dpre, which
degrades the quality of the reconstructed image as shown in
Fig. 2.
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The fluctuating quality of wireless channels forces a trade-
off between two critical objectives, which defines the core
problem of this paper:

• Meeting Data Rate Requirements: When channel qual-
ity degrades, transmitting the high-dimensional feature
vector (dpre) that the RX model is aligned with can
violate latency and data rate constraints. To comply, the
TX must reduce the transmission dimension to α < dpre.

• Maintaining Task Performance: This necessary reduc-
tion in dimension, however, leads directly to the SMA
problem. As the information content of the reconstructed
data x̂ deviates from what the pre-trained model W
expects, the final task performance (e.g., classification
accuracy) drops significantly.

Therefore, our goal is to resolve this conflict. We aim to
develop a system that meets strict channel requirements by
adjusting the transmitted data, while simultaneously preventing
performance loss by adapting the receiver model.

III. PROPOSED ALGORITHM: AGILE SEMANTICS
ALIGNMENT

To resolve the trade-off between data rate and task accuracy
defined in Section II, we propose a novel framework for agile
semantics alignment. The core idea is to treat the mandatory
reduction of feature dimensions not just as a challenge, but as
an opportunity. By significantly lowering the dimension of the
transmitted data, we first meet the strict data rate requirements
imposed by the channel. This reduction creates spare capacity
in the communication payload, which we then leverage to
transmit a small set of training data. At the RX, this data is
used to rapidly fine-tune the pre-trained model, allowing it to
adapt to the lower-dimensional input and thus recovering task
performance. This co-adaptation of communication payload
and the receiver model enables a system that is resilient to
dynamic channel conditions.

A. Adaptive Payload Composition via PCA

To implement the dimensionality reduction and reconstruc-
tion processes described in the system model, our framework
employs Principal Component Analysis (PCA) [4]. The TX
uses a pre-calculated projection matrix Pα ∈ Rdraw×α, which
contains the top α principal components as its columns. The
compression (encoding) of an input vector x is performed as:

z = P⊤
α x (1)

where z ∈ Rα is the compact feature vector transmitted
over the channel. This reduction creates spare transmission
capacity, which is then strategically used to send a small
set of training samples that enable the RX to perform agile
fine-tuning. The maximum number of transmittable training
samples, Nmax, for a given maximum payload size Bmax is
calculated as:

Nmax =

⌊
Bmax −H − t(h+ σα)

h+ σα

⌋
(2)

Fig. 3. The overall online framework of the proposed LoRA-based fine-tuning
system for agile semantics alignment.

where H is the main header, h is the vector header, t is the
number of test samples, and σ is the bytes per dimension
value. At the RX, the data is reconstructed (decoded) via:

x̂ = Pαz (3)

The reconstructed vector x̂, while having the same dimension
as the original raw data, contains less information due to
being reconstructed from the compressed vector z. Feeding
this information-degraded data into the pre-trained classifier
causes severe performance degradation due to SMA. The
following subsection details our proposed method to overcome
this degradation.

B. LoRA-based Fine-Tuning

As established in Section III-A, the TX lowers the feature
dimension via PCA to satisfy channel capacity constraints,
which in turn causes SMA. To overcome the subsequent
performance degradation, the RX performs a rapid, low-
latency adaptation of its classification model using Low-
Rank Adaptation (LoRA) [5]. LoRA is a parameter-efficient
fine-tuning technique that avoids retraining the entire model.
Instead, for a pre-trained weight matrix W ∈ Rdraw×k within
the classifier, where k is the number of classes, it injects a
small, trainable update ∆W . This update is represented by a
low-rank decomposition:

∆W = BA, (4)

where B ∈ Rdraw×r and A ∈ Rr×k, with the rank
r ≪ min(draw, k). During fine-tuning, only the new low-rank
matrices A and B are updated while W remains frozen. The
final adapted weight matrix W ∗ is then given by:

W ∗ = W +∆W = W +BA (5)

This dramatically reduces the number of trainable parameters,
enabling the RX to quickly adapt its model to the new data
distribution using only the handful of training samples sent by
the TX.

C. Overall Online Framework

The complete process, which integrates adaptive payload
composition with rapid model fine-tuning, operates as an
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Fig. 4. SIRIUS 5G-V2X testbed.

online framework illustrated in Fig. 3. The procedure is as
follows:

1) TX-side Processing: The TX determines the transmission
dimension α based on the channel state. It then com-
presses the test data x into a feature vector z using the
PCA encoding process defined in (1). Concurrently, it
calculates the maximum number of transmittable training
samples, Nmax, using (2) and applies the same PCA
compression to them.

2) Transmission: The TX transmits the compact, α-
dimensional feature vectors z for both test and training
samples, composed as described in Section III-A.

3) RX-side Reconstruction: Upon receiving the payload, the
RX reconstructs the images x̂ for both datasets from
their respective feature vectors using the inverse PCA
transform shown in (3).

4) LoRA Fine-Tuning: Using the small set of reconstructed
training data, the RX fine-tunes its classifier. This adapta-
tion is performed efficiently using the LoRA mechanism
detailed in Section III-B, resulting in an updated weight
matrix W ∗ as shown in (5).

5) Inference: Finally, the RX feeds the reconstructed test
data into the newly adapted model W ∗ to perform the
final classification task.

IV. EXPERIMENTS

A. Experimental Setup

Experiments were conducted using two SIRIUS 5G-V2X
testbeds [6] as the TX and RX, as shown in Fig. 4. The
system operated on a V2X sidelink channel with a 40 MHz
bandwidth. The TX power was set to 23 dBm, and the distance
between the TX and RX was 3 meters in a line-of-sight (LOS)
environment. To simulate a dynamic channel where the data
rate is limited, the modulation was changed from 256-QAM
to 64-QAM. We used the MNIST dataset [7], for which the
RX’s Multi-Layer Perceptron (MLP) classifier [8] was pre-
trained on data reconstructed from dpre = 200 features. We
evaluate our proposed method against End-to-End and Pre-
Trained baselines.
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Fig. 5. Accuracy vs. Dimension for the MNIST dataset.

B. Results and Analysis

The performance of our proposed algorithm is compared
against two baselines, as shown in Fig. 5 and Fig. 6.

First, we evaluate the classification accuracy, presented in
Fig. 5. The three methods compared in the figure are as
follows:

• End-to-End: For each transmission dimension α, a sep-
arate MLP model, including its entire weight matrix W ,
is trained from scratch on data reconstructed specifically
from α features. This represents the theoretical perfor-
mance upper bound for that dimension but is impractical
due to high latency and storage costs.

• Pre-Trained: The original pre-trained model W , op-
timized for dpre, is used directly to classify data re-
constructed from the new dimension α without any
adaptation. This baseline demonstrates the performance
degradation caused by SMA.

• LoRA (Proposed): The original pre-trained model W
is rapidly adapted using the LoRA fine-tuning technique
described in Section III-B, utilizing the small set of
training data to produce a final, adapted model W ∗.

The Pre-Trained baseline exhibits poor performance at lower
dimensions and only gradually recovers as α increases, clearly
illustrating the detrimental effect of SMA. In contrast, our
proposed LoRA-based approach significantly outperforms this
baseline across all tested dimensions. Notably, the accuracy of
our method is comparable and, for a wide range of dimensions
(e.g., 60 to 140), even slightly superior to the End-to-End
baseline. This demonstrates the effectiveness of our rapid
adaptation technique in recovering performance lost to SMA.

Next, we analyze the latency, presented in Fig. 6. The
latency components shown in the figure are defined as follows:

• Communication: This measures the time from the TX
initiating the payload calculation and PCA encoding to
the RX completing the image reconstruction from the
received feature vectors.
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Fig. 6. Latency vs. Dimension for the MNIST dataset.

• Fine-Tuning: This is the cumulative time, including the
Communication latency and the additional time required
for the RX to adapt the pre-trained model using the LoRA
technique.

• Classification: This represents the total end-to-end la-
tency, encompassing all previous steps plus the final
inference time for the classification task.

Fig. 6 shows a clear trade-off: as the transmitted dimension α
decreases, more training data can be included in the payload,
which slightly increases the fine-tuning time. Note that the
latency for the End-to-End baseline is omitted from the figure,
as the time required for full retraining is orders of magnitude
higher than our fine-tuning approach, making a direct com-
parison on the same scale impractical and highlighting the
significant time-saving advantage of our method.

V. CONCLUSION

This paper proposes a split-architecture SC algorithm that
effectively addresses the SMA problem caused by varying
channel conditions. By combining adaptive dimensionality
reduction at the TX with rapid LoRA-based fine-tuning at the
RX, our framework allows the system to adapt to channel
changes in real-time. Experimental results on the MNIST
dataset demonstrate that our approach achieves high task accu-
racy comparable to full retraining, but with significantly lower
latency. This ensures both efficiency, by avoiding the compu-
tationally intensive process of retraining the entire model, and
practicality, by enabling rapid adaptation to dynamic channel
conditions.

Future work will proceed in two main directions. First, we
will generalize the proposed framework. The MNIST dataset
is relatively simple, allowing a basic MLP classifier to achieve
high performance. We intend to validate our approach on
more complex datasets that require advanced architectures,
such as Convolutional Neural Networks (CNNs), to verify its
effectiveness in more challenging scenarios. Second, we will

develop a dynamic policy for optimal dimension control. Such
a policy would aim to select the ideal transmission dimension
α that maximizes the data rate for a given channel state, while
ensuring that task performance remains above a predefined
threshold.
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