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Abstract—This paper investigates pilot-free semantic commu-
nication over time-varying orthogonal frequency division multi-
plexing (OFDM) channels. By eliminating pilots, the framework
improves bandwidth efficiency and leverages end-to-end learning
to implicitly adapt to fading dynamics. Performance evaluation
shows that the system achieves strong reconstruction quality when
training and deployment channels are matched, but suffers sig-
nificant degradation under mismatched conditions. In particular,
models trained on more challenging fading environments general-
ize better and maintain higher robustness across diverse scenarios.
These findings highlight both the potential and vulnerability of
pilot-free semantic communication and underscore the importance
of robust training strategies for reliable deployment.

I. INTRODUCTION

Semantic communication aims to reconstruct the source data
in a task-relevant manner, in contrast to conventional systems
that are based on exact bit-level recovery. From the perspec-
tive of joint source—channel coding (JSCC), this paradigm
is particularly advantageous in short block length regimes,
where traditional separation-based designs suffer from coding
overhead and error propagation [1]-[3]. By jointly optimizing
the entire communication chain, semantic communication can
achieve higher efficiency and robustness, maintaining mean-
ingful reconstruction quality even when reliable bit-wise re-
covery is infeasible. The dominant physical layer technology,
orthogonal frequency division multiplexing (OFDM), combats
the frequency-selective nature of wireless channels but tradi-
tionally relies on pilot symbols for channel estimation. This
pilot-assisted approach, however, faces a fundamental trade-off
in mobile environments. High user mobility induces Doppler
shifts, causing the channel to be time-varying. To track these
rapid changes, a higher density of pilots is required, which sig-
nificantly reduces spectral efficiency. Conversely, using fewer
pilots can lead to performance loss from channel aging, where
the channel estimate becomes outdated before it can be applied
to the data symbols.

In this context, pilot-free semantic communication has the
potential to offer significant advantages. By eliminating the
need for dedicated pilot symbols, such systems can reduce
signaling overhead and improve spectral efficiency [2], while
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leveraging end-to-end learning to implicitly adapt to chan-
nel variations. This philosophy aligns naturally with neural
network—based transceivers, which treat the channel as an
integrated, though unknown, component of the communication
system. Despite these advantages, a critical challenge remains:
robustness to channel mismatch. When the propagation environ-
ment during deployment differs from that used for training—for
example, in terms of power delay profile (PDP) or user ve-
locity—the learned transceiver may fail to generalize, leading
to significant performance degradation. While the potential of
pilot-free systems has been recognized, their reliability in time-
varying OFDM fading channels has not been systematically
explored. Motivated by this gap, this paper investigates pilot-
free semantic communication under standardized 3GPP fading
models [4]. We train end-to-end transceivers under specific
channel conditions and evaluate their reconstruction quality
across matched and mismatched environments. The results
reveal that while pilot-free semantic communication achieves
strong performance under matched conditions, it suffers from
pronounced degradation under channel profile mismatch. These
findings highlight the dual nature of pilot-free systems—high
efficiency but vulnerability to mismatch—and underscore the
need for robust training strategies to ensure reliable deployment
in dynamic wireless environments.

II. SYSTEM MODEL AND END-TO-END TRAINING

We consider a single-input single-output OFDM-based se-
mantic communication system that transmits source image
over a frequency-selective fading channel without explicit pilot
symbols or channel estimation. Let X € RE*H>*W denote
the source image. A learnable encoder Eg(-) produces a latent
tensor

Z = £p(X) € RO HexWe, (1)

Assuming the number of OFDM subcarrier Ny, = H,W,, the
latent tensor is reshaped into a matrix Zyeshapea € R Noc,
This matrix is subsequently partitioned into two halves, Zca €
RE/2%Nse and Ziyag € RE/2¥Nse | which are then used to
construct the complex-valued channel input symbol matrix:

S =Zcal + jzimag € CCZ/2><NSC~ (2)

To maintain a consistent transmit power, each of the C;/2
symbol vectors, denoted by s; € CNsc is normalized such
that its total power equals Ny, i.e., 8t = v/ Ngc s¢/||st||2-
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We consider a time-varying, frequency-selective wire-
less channel. The channel is characterized by a time-
varying channel impulse response (CIR) vector, h[t] =
[holt], halt], ..., hr—1[t]]T € CE, where t is the discrete time
index corresponding to the OFDM symbol and L is the number
of channel taps. At any given time ¢, each tap hy[t] is modeled
as an independent complex Gaussian random variable with
he[t] ~ CN(0,0%). The tap variances {07} are determined by
a given power delay profile, which is normalized such that the

. o L—1 o
total average power is unity, i.e., > ,_, 0; = 1. The temporal
evolution of the CIR follows a first-order autoregressive model,
which captures the channel’s time correlation:

ht + 1] = phlt] + V1 — p?2 w[t], 3)

where w|t] € CL is a complex Gaussian innovation vector with
the same statistics as h[t]. The time correlation coefficient, p, is
derived from the Jakes model, reflecting the impact of mobility:

pP= J0(27deTsym)7 (4)

where Jy(-) is the zeroth-order Bessel function, Ty, is the
OFDM symbol duration, and fj; is the maximum Doppler shift
determined by the carrier frequency and receiver velocity. For
each OFDM symbol at time ¢, the channel frequency response
(CFR) on the k-th subcarrier, hf[t,k], is obtained via the
discrete Fourier transform (DFT) of the corresponding CIR,
hlt]:

1 = _
g h te_j;’rsc,
JMWﬂZH

The received signal for the ¢-th symbol on subcarrier k is now
modeled as:

hylt, k] = n=0,...,Ne—1. (5

ylt, k] = hglt, k] 5[t, k] + v[t, k], (6)

where v[t,k] ~ CN(0,0?) is the additive white Gaussian
noise at that time and subcarrier. By stacking {y[t, k]} over
all subcarriers and OFDM symbols, we obtain the frequency-
domain receive matrix Y € C¢/2*Nee ts real and imaginary
parts are concatenated along the channel dimension to form
Z € R¢*Nse which is then reshaped to RC*HexWe and fed
into the decoder Dy (-) for source reconstruction:

X = D¢(Zreshaped)~ @)

The parameters 6 of the encoder Ey(-) and ¢ of the decoder
Dy(-) are jointly trained end-to-end to minimize the mean
squared error (MSE) between the source image X and the
reconstructed image X. This objective is formulated as the loss
function:

~ |12
Lrise = Ex, (ni) v [HX—XM, ®)

where the expectation is taken over the distributions of the
source data, the channel realizations, and the additive noise.
Minimizing this loss enables the system to learn a communica-
tion strategy that is implicitly robust to the channel dynamics.
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Fig. 1. PSNR performance of pilot-free semantic communication under
different SNR range. Models are trained on EPA, EVA, and ETU channels
and tested on (a) EVA and (b) ETU channels.

ITII. SIMULATION RESULTS

We conducted training and evaluation using the CIFAR-10
dataset, where each image has a resolution of 3 x 32 x 32.
The semantic encoder—decoder was implemented with a swin
transformer backbone [5], which maps each image into a latent
tensor of dimension 16 x 8 x 8. The encoder is constructed
with two hierarchical stages, each with depth 2, embedding
dimensions [32,16], and 8 attention heads per stage, using a
window size of 8 and an MLP expansion ratio of 4. The decoder
mirrors this design with embedding dimensions [16, 32] while
maintaining the same depth, number of heads, and window
size. This latent representation was subsequently reshaped into
a complex-valued OFDM symbol matrix and transmitted over
an OFDM system with Ny, = 64 subcarriers and 8 OFDM
symbols.

The network was trained for 200 epochs using the Adam
optimizer with a learning rate of 1 x 10~ and a batch size
of 16. During training, the propagation channel was simulated
as a frequency-selective, time-varying fading process following
a 3GPP PDP. Specifically, we considered three standardized
profiles: Extended Pedestrian A (EPA), Extended Vehicular A

2155



(EVA), and Extended Typical Urban (ETU) [4]. The temporal
correlation of the channel taps was modeled according to Jakes’
model with Doppler spread determined by the carrier frequency
fe = 3.5 GHz and receiver velocity (EPA: 5 km/h, EVA:
120 km/h, ETU: 300 km/h). We use the peak signal-to-noise
ratio (PSNR) as the evaluation metric for reconstruction quality,

defined as

MAX?
PSNR £ 10 logig—a= NSE )

where MAX is the maximum pixel value (255 for 8-bit images).
The signal-to-noise ratio (SNR) quantifies the relative power of
the transmitted signal to the noise, defined as

SCHStH Ee 0 UZ

SNR £ 10 log;

(10)

To evaluate both the effectiveness of pllot-free semantic com-
munication and its robustness against channel profile mismatch,
we trained three independent models at an SNR of 0 dB under
EPA, EVA, and ETU channels, respectively, and tested them
on two deployment channels (EVA and ETU). Figure 1 shows
the average PSNR (dB) over 0-8 dB. When training and testing
channels are matched, the pilot-free models demonstrate strong
reconstruction quality even with short block length, limited
bandwidth, and no explicit CSI, highlighting the effectiveness
of end-to-end learning under consistent fading conditions. Un-
der mismatched conditions, however, clear differences emerge:
the EPA-trained model exhibits the most severe degradation
on both EVA and ETU, indicating poor generalization beyond
its training environment. The EVA-trained model performs
well on EVA and maintains reasonable performance on ETU,
though with a noticeable drop. By contrast, the ETU-trained
model demonstrates the strongest robustness, achieving the best
performance on ETU and maintaining more robust performance
than the EPA-trained model on EVA. These results emphasize
that pilot-free semantic systems are vulnerable to channel
profile mismatch and that robust training strategies—potentially
incorporating diverse or joint channel profiles—are critical for
reliable deployment.

IV. CONCLUSION

This paper investigated pilot-free semantic communication
over time-varying OFDM channels. By eliminating dedicated
pilot symbols, the proposed framework improves bandwidth
efficiency while relying on end-to-end learning to implicitly
adapt to channel variations. Performance was evaluated under
standardized 3GPP fading models (EPA, EVA, ETU). The
results show that, under matched training and testing conditions,
pilot-free semantic communication achieves strong reconstruc-
tion quality even with short block length, limited bandwidth,
and no explicit CSI. However, the system is sensitive to channel
profile mismatch: the EPA-trained model exhibits the most se-
vere degradation when tested on different deployment channels,
whereas the ETU-trained model demonstrates the strongest
robustness. These findings highlight both the potential and
the vulnerability of pilot-free semantic communication. Future
work will focus on robust training strategies that incorporate di-

verse or mixed channel profiles, as well as adaptive transceivers
capable of generalizing to unseen propagation environments.
Promising directions include mixture-of-experts—based archi-
tectures that dynamically activate specialized sub-models for
different fading conditions, and meta-learning techniques that
enable rapid adaptation to previously unseen channels.
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