979-8-3315-5678-5/25/$31.00 ©2025 IEEE

On the Potential of Entropy-Constrained Vector
Quantization in Semantic Communication

Junyong Shin and Yo-Seb Jeon
Department of Electrical Engineering, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
Email: {sjyong, yoseb.jeon} @postech.ac.kr

Abstract—This paper investigates the benefit of integrating
entropy coding into the vector quantization (VQ) framework
for semantic communication. When using a learnable VQ code-
book jointly trained with the semantic encoder and decoder,
the resulting codeword distribution is typically non-uniform.
Motivated by this observation, we incorporate entropy coding
into the learned VQ structure to enhance compression efficiency.
Specifically, we adopt an entropy-constrained vector quantization
(ECVQ) framework that leverages probabilistic modeling to im-
prove rate-distortion performance. Simulation results show that
ECVQ outperforms conventional VQ-based methods, validating
its effectiveness in improving rate-distortion efficiency.

I. INTRODUCTION

Semantic communication (SC) has recently emerged as a
paradigm shift in wireless communication, aiming to transmit
the semantic meaning of data rather than its raw form. This
shift allows communication systems to significantly reduce
transmission overhead while preserving task-relevant infor-
mation, making it particularly effective in many applications
[1]. Within this context, digital semantic communication has
garnered increasing attention as it enables semantic trans-
mission over existing digital infrastructures. This is typically
achieved by extracting semantic features using neural networks
in deep learning, and then mapping these features into discrete
representations through quantization [2]-[4].

Among quantization approaches, vector quantization (VQ)
has proven to be an effective tool for compressing high-
dimensional semantic features into finite-bit representations
[5]. One promising methodology is to jointly train a neural
encoder, decoder, and a learnable VQ module, which allows
the quantization process to adapt to the feature distribution in
a data-driven manner. By integrating the VQ module directly
within the semantic feature space, this approach enables the
design of quantizers that are well-matched to the underlying
data distribution, thereby enhancing compression efficiency
and overall system performance [6]-[9].

One critical challenge in applying VQ to SC systems is
achieving rate-distortion optimality. Entropy coding, when ap-
plied to the output of a VQ module, can effectively reduce the
average number of bits required for transmission by assigning
shorter bit sequences to frequently used codewords. However,
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simply applying entropy coding as a post-processing step does
not guarantee optimal compression efficiency, as conventional
VQ schemes are not designed to account for the underlying
codeword distribution during quantization. To address this
limitation, entropy-constrained vector quantization (ECVQ)
integrates entropy modeling directly into the quantization
process [10]. By incorporating codeword probabilities into the
quantization criterion, ECVQ guides the quantizer to favor
high-probability codewords, thereby achieving more efficient
bit allocation and improved rate-distortion performance. This
approach has proven effective in various deep learning-based
VQ frameworks, where quantization and entropy coding are
jointly optimized for end-to-end compression efficiency [11].

In this paper, we investigate the potential of ECVQ to en-
hance communication efficiency in semantic communication.
Following the approach in [11], we adopt entropy coding as
a post-processing step of the VQ module, which is jointly
trained with the semantic encoder and decoder. To support this
process, we employ a modified VQ criterion that incorporates
a rate bias term. This rate bias is modeled using trainable
parameters to reflect the distribution of codewords. Simula-
tion results demonstrate that the ECVQ framework achieves
superior rate-distortion performance compared to existing VQ-
based methods, validating its effectiveness in improving rate-
distortion efficiency.

II. SYSTEM MODEL

In this section, we present a digital semantic communica-
tion system considered in our work. To perform an image
reconstruction task with a given data sample x € RMo, the
transmitter first employs a semantic encoder network fen(+, @)
to extract a semantic feature z € R, given by

Z = fone(x,0) € RM, (1)

To represent z with finite bit precision, we assume that a quan-
tization method is applied to the semantic feature z, producing
a quantized semantic feature z,. The bit sequence associated
with z, is then transmitted to the receiver over an error-free
communication channel. The specific quantization approach
adopted in our proposed framework will be described in detail
in the following section. At the receiver, the quantized feature
z4, is processed by a semantic decoder network faec(-, @) to
reconstruct the source sample, denoted by

X= fdec(zq7 ¢)7 2
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where X is the final reconstructed output.

III. ENTROPY-CONSTRAINED VECTOR QUANTIZATION
(ECVQ) IN SC

The ECVQ method was developed to account for the rate-
distortion optimality in VQ under entropy-coded outputs. This
is motivated by the fact that simply applying entropy coding
to conventional VQ—based solely on minimum Euclidean
distance—does not inherently guarantee rate efficiency [10].
To address this point in SC framework, we first divide the
semantic feature z into N sub-vectors, each of dimension D,
such that M = N x D. Let z; denote the ¢-th sub-vector of
z, defined as z; = [2(;_1)p+1," - » Zip|, Where z; is the j-th
entry of z. Each sub-vector is quantized independently using
a D-dimensional VQ codebook B = {b;}X_|. Let z,; be the
quantization output of the VQ module for z;. The quantized
sub-vectors are then entropy coded to produce corresponding
bit sequences Z,;, which are concatenated to form the final
transmission sequence as z, = [Zg.1," - ,%q,N].

To quantize each sub-vector, the ECVQ method adopts the
following VQ criterion:

Zq,; = argmin {—ylogQP(k) + ||z — bk||2} , 3)

breB
where P(k) denotes the probability distribution of codeword
by on the VQ codebook. This distribution can be modeled as
P(k e 4
0= @
where {wy, }< | are trainable parameters. In this formulation,
the first term in (3), referred to as the rate bias term,
contributes to shift the quantization boundaries from high-
probability to low-probability regions in the VQ criterion.
By introducing this term, the quantization results can be
more concentrated on high-probability codewords, ultimately
reducing the bit length after entropy coding. This term is
regulated by the hyperparameter v, which controls the extent
to which the rate is reduced within the overall VQ criterion.
When v = 0, the rate bias is ignored, and the criterion reduces
to the conventional VQ objective without rate considerations.

To jointly train the encoder and decoder networks with the
ECVQ module, we design the loss function Lecyq as follows:

£ecvq = £vq - V(l + B>Ek\z [IOgQPk|z] ) )]
~ 2
Log =[5 = x[|" + lIsg(z) — z4|* + Bllz - se(z,)]*, (©6)

where [ is a hyperparameter and sg(-) denotes the stop-
gradient operator, which treats its input as a constant during
backpropagation, thereby preventing gradient updates. More-
over, Py, represents the conditional probability distribution
of by given z, corresponding only to the codewords that are
actually selected as quantization outputs.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the ECVQ
method in SC. We utilize the CIFAR-10 image dataset in
simulation. The sizes of training and inference datasets are
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Fig. 1. PNSR performances of various VQ frameworks for semantic com-
munications across different average transmission bits.

configurated as 50,000 and 10,000, respectively. The Adam
optimizer is employed with 10~ learning rate, 128 training
epochs, and 64 batch size. Other key parameters for the ECVQ
method are set as follows: D = 4, K = 256, 8 = 0.25, and
v e {é, %, ﬁ} In our simulation, peak signal-to-noise ratio
(PSNR) is adopted as a performance measure, which is defined
as

MAX?2

PSNR =10 loglo <1\/_[S:E)2

)am. o
where MAX denotes the maximum possible pixel value of
the image (e.g., 255 for 8-bit image), and MSE represents the
mean-squared-error between the input image and reconstructed
image. To perform the entropy coding in the inference stage,
a mapping table for the Huffman coding is constructed for
each VQ codebook based on the empirical distribution of the
outputs of each trained VQ module from all training data.

Fig. 1 presents the PSNR performance of the ECVQ method
in SC across varying average transmission bit rates. As il-
lustrated, the ECVQ method consistently outperforms other
baselines. The performance gap between ECVQ-based struc-
tures and the simple entropy-coded VQ baseline underscores
the effectiveness of the ECVQ criterion and its correspond-
ing training strategy. Merely applying entropy coding to the
VQ output yields only marginal performance gains, as this
approach does not account for rate-distortion optimality. In
contrast, ECVQ explicitly incorporates rate-distortion trade-
offs into both its quantization criterion and loss function,
leading to substantial improvements over standard entropy-
coded VQ.

V. CONCLUSION

This paper examined the use of entropy-constrained vec-
tor quantization (ECVQ) for semantic communication. By
incorporating entropy modeling into the quantization process,
ECVQ achieves superior rate-distortion efficiency compared
to conventional VQ. Simulation results confirmed that explicit
entropy-aware design substantially improves compression per-
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formance, highlighting ECVQ as a promising approach for
efficient semantic communication.
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