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Abstract—Semantic communication aims to transmit task-
relevant meaning, not just raw data. This paper evaluates the
performance of repetition, polar, and low-density parity-check
(LDPC) codes in a digital semantic communication system. The
probabilities are obtained via end-to-end training with a fixed bit-
flip probability. Experiments on image transmission over additive
white Gaussian noise channels show that the trade-off between
image reconstruction quality and energy efficiency is controlled
by the bit-flip probability.

I. INTRODUCTION

As a new approach, semantic communication transmits task-
relevant information instead of raw data, leading to more
efficient use of communication resources and enhanced ro-
bustness to noise and interference. [1]. The early research
was focused on neural joint source-channel coding (JSCC). In
JSCC, encoders and decoders are trained together in an end-
to-end manner to minimize task-specific losses [2]. Although
these analog JSCC methods proved effective, their reliance
on continuous-valued outputs made them incompatible with
modern digital systems.

To address this, digital semantic communication has gained
attention for its compatibility and flexibility [3]-[5]. Various
methods have enabled digital outputs through sampling-based
approaches, Gumbel-softmax, or differentiable quantization,
respectively. While these methods have shown promising
results, most do not explicitly consider error characteristics
of semantic representations, limiting their integration with
advanced channel coding strategies.

Our study aims to investigate the performance of standard
channel coding schemes in digital semantic communication
systems, while a bit-flip probability is fixed during end-to-
end training. We evaluate three coding strategies—repetition
coding and low-density parity-check (LDPC) coding—under a
fixed signal-to-noise ratio (SNR) in an additive white Gaussian
noise (AWGN) channel. Our results reveal that there is a
trade-off between image reconstruction quality and energy
efficiency, which is controlled by the bit-flip probability.

II. SYSTEM MODEL

In this section, we describe the digital semantic communi-
cation scenario considered in this work.
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A. Training Stage

This study considers a digital semantic communication
system designed for transmitting images. In this system, an
input image, represented as u € RY, is first processed by a
semantic encoder fg,, parameterized by Oen.. This encoder
extracts a key feature of the image as follows:

v = fo, (u) € RM, (1)

where v represents the semantic feature vector of length M.
After encoding, each element of v is quantized using a uniform
B-bit quantizer. The resulting quantized output is defined as

q; =Q(v;) € Q,

where v; denotes the i-th element of v, Q = {q1, G2, ..., qs5 }
represents the quantizer codebook, and each g; is a binary
vector of length B. In this work, we refer to each binary
entry of q; as a semantic bit. The transmitter then constructs
a semantic bit sequence as b = [q{ , -+ ,q,]" € {0,1}%,
where K = M B is the total number of semantic bits.

During the training stage, we model the channel by assum-
ing that each semantic bit in the sequence b is independently
flipped with a fixed bit-flip probability, denoted by pu. This
process results in a received bit vector b. This fixed bit-
flip probability, p, serves as a hyperparameter during the
end-to-end training process, effectively capturing the trade-off
between image reconstruction quality and energy efficiency.
For instance, training with a low p encourages the neural
network to learn a more detailed semantic representation,
assuming a highly reliable channel. This results in higher
task performance, i.e., better image reconstruction quality.
However, achieving such a low-bit probability in a practical
communication system requires significant resources, such as
higher transmission power or larger channel codes, leading to
lower energy efficiency.

From the received bit sequence b, the receiver constructs
the semantic feature vector v. Specifically, b is first partitioned
into M binary vectors, g;, each of length B. Then, each binary
vector is dequantized to recover the corresponding semantic
feature element:

ﬁi = Qil(dZ) € R7

The resulting feature vector is then fed into the semantic
decoder to reconstruct the original input data:

= fo,. () €RY, 4)

i € [M], 2

i€ [M]. 3)
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where fg, . denotes the semantic decoder.

B. Inference Stage

In the inference stage, the transmitter first transforms an
input image w into a semantic bit sequence b € {0, 1}* using
the trained semantic encoder fg, . and the quantizer Q). To
improve the reliability of the transmission, a channel coding
process is utilized, which adds redundant bits to b to correct
errors. The bit sequence that results from channel encoding is
denoted as

b = gene(b) € {0,1} Vet (5)

where gen. denotes the channel encoder.

The wireless link between the transmitter and receiver
is modeled as an additive white Gaussian noise (AWGN)
channel. In AWGN channel, the received signal at time slot ¢
is represented as

Yt = /PtTt + U,

where v; ~ CN(0,0?) denotes Gaussian noise with zero mean
and variance o2, and p¢ is the transmission power allocated to
the ¢t-th symbol.

After receiving the signal, the receiver attempts to recover

t e [T), ©)

a semantic bit sequence b = (41, - ,d,)" € {0,1}K using
channel decoding, as b = ggec(y), Where gqec is the channel
decoder, and y = [y, -+ ,yr]" is a received signal vector.

Finally, the reconstructed semantic bit sequence bis dequan-
tized to recover the semantic feature vector ©. This vector is
then fed into the trained semantic decoder fg,, . to reconstruct
the original data.

III. SIMULATION RESULTS

In this section, we evaluate the performance of standard
channel coding schemes for an image transmission task with
MNIST dataset. Convolutional neural network (CNN)-based
autoencoder architectures is adopted, where the network de-
sign is guided by [2]. The quantization bit for feature vector
is 8 bits. The symbol is transmitted with power Pians = 0
dBW, and the SNR is fixed at 0 dB under an AWGN channel.
In the simulations, we compare the following channel coding
frameworks:

« Repetition: All bits are encoded using the repetition code

with a fixed repetition number.The repetition number is
determined as the smallest integer 2 which satisfies

3 (3) d(1-e)fi T <p, )

j=Tr/2 N/

where € = Q(V2SNR).
o LDPC: All bits are encoded using the LDPC code with
a fixed rate. The rate is determined as the smallest rate
whose resulting bit error rate is lower than p among the
candidates {3/4, 2/3, 1/2, 1/3}.
¢ Genie: This ideal baseline assumes perfect transmission
with no bit-flips, i.e., all bits are received without error.
In Fig. 1, we compare the PSNR and corresponding total
blocklength for various channel coding frameworks, using the
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Fig. 1. Comparison of PSNR versus total blocklength for various channel

coding frameworks using the MNIST dataset (K = 3136).

MNIST dataset with © = 107* and p = 1072. Both the
repetition and LDPC coding schemes achieve a PSNR that
approaches the genie baseline, which serves as the perfor-
mance upper bound. The results also demonstrate the trade-
off controlled by p. Targeting a smaller bit-flip probability
allows the system to achieve a significantly higher PSNR, but
this requires a longer total block length to meet the stricter
reliability constraint. Furthermore, a comparison between the
coding schemes shows that LDPC consistently uses much
less blocklength than repetition coding while maintaining the
similar PSNR performance.

IV. CONCLUSION

In this paper, we investigated the performance of standard
channel coding schemes in a digital semantic communication
system trained with a fixed target bit-flip probability. We
demonstrated that this training methodology effectively cap-
tures the trade-off between image reconstruction quality and
energy efficiency, controlled by the hyperparameter, p. Our
key finding is that under fixed channel conditions, both rep-
etition and LDPC codes can approach the ideal performance
upper bound set by a genie-aided system. Furthermore, our
results highlight that advanced channel codes like LDPC offer
significantly better efficiency, achieving a similar reconstruc-
tion quality to repetition coding but with a much shorter total
blocklength.
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