979-8-3315-5678-5/25/$31.00 ©2025 IEEE

Importance-Aware Subcarrier Mapping for
OFDM-Based Digital Semantic Communication

Joohyuk Park, Jiyoon Kim, and Yo-Seb Jeon
Department of Electrical Engineering, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
Email: {joohyuk.park, jykim0223, yoseb.jeon} @postech.ac.kr

Abstract—This paper proposes an importance-aware subcarrier
mapping scheme for orthogonal frequency division multiplexing
(OFDM)-based digital semantic communications. The proposed
framework employs a pretrained vision transformer to estimate
attention scores for individual image patches and selects the
most informative patches for OFDM transmission. By exploiting
the frequency-selective nature of OFDM channels, patches with
higher attention scores are assigned to subcarriers with superior
channel gains, thereby enhancing the reliability of critical se-
mantic information delivery. Simulation results confirm that the
proposed scheme consistently achieves higher classification accu-
racy than conventional mapping strategies, particularly under low
signal-to-noise ratio conditions.

I. INTRODUCTION

Artificial intelligence (AI) has advanced rapidly in recent
years and achieved remarkable success across diverse appli-
cation domains. This progress has fueled growing interest in
semantic communications, representing a paradigm shift from
traditional Shannon theory-based frameworks toward deep
learning-enabled information extraction and transmission [1].
Unlike conventional communication systems, which are de-
signed to minimize bit-level errors across the entire transmitted
data, semantic communication systems focus on identifying
and transmitting only essential information for accomplishing
the target task.

Early studies have primarily focused on analog implemen-
tations. In recent years digital semantic communication ap-
proaches that preserve compatibility with standardized wireless
systems have attracted growing research interest. For instance,
in [2], a semantic-importance-aware scheme has been proposed
in which an entropy model is trained to estimate the importance
of each semantic symbol. Based on these importance measures,
the scheme allocates bandwidth and reorders symbols such that
those with higher importance are mapped to resources closer
to pilot signals, thereby mitigating the impact of channel esti-
mation errors. In [3], a masking strategy has been introduced
within a vector-quantized variational autoencoder (VQ-VAE)
framework, where an additional feature-importance estimation
module is jointly trained. This module identifies noise-related
image patches and suppresses their feature activations, ensuring
that only important features are transmitted. Transmitting a
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smaller set of more relevant features enhances bandwidth
efficiency and reduces communication overhead.

Building upon these prior studies, this work presents a
method for importance-aware subcarrier mapping that elim-
inates the need to train an auxiliary model for importance
estimation. The proposed scheme exploits the attention mech-
anism [4] inherently embedded within a pretrained Vision
Transformer (ViT) to directly derive patch-level importance
scores without incurring additional training cost. These scores
are subsequently used to map high-importance patches to
subcarriers with superior channel gains, thereby enhancing the
reliability of semantic information delivery over orthogonal
frequency division multiplexing (OFDM) channels, particularly
under adverse channel conditions.

Our simulation results demonstrate that the proposed method
consistently outperforms conventional mapping strategies in the
single-view image classification task on the ImageNet100 [5]
dataset with particularly notable gains in low signal-to-noise ra-
tio (SNR) scenarios. These findings confirm the effectiveness of
attention-based importance extraction for subcarrier mapping in
enhancing the robustness of digital semantic communication
systems.

II. SYSTEM MODEL

In this work, we consider an OFDM-based digital semantic
communication system for wireless image transmission. Let
denote the number of OFDM subcarriers. The received signal
at subcarrier k is expressed as [6]

Y[k = HEX[k] + N[, )

where k& € {1,...,K}, X[k] is the symbol transmitted
over subcarrier k obtained by M-ary quadrature amplitude
modulation (M-QAM), where M denotes the modulation or-
der, H[k] ~ CN(0,1) represents the corresponding complex
channel coefficient modeled as Rayleigh fading with unit
variance, and N[k] ~ CN(0,0%) represents additive white
Gaussian noise (AWGN) with variance o%;. Assuming perfect
channel state information (CSI) at the receiver, frequency-
domain equalization is performed to recover the transmitted
symbol as
. H*[k] -

XK = g T = X4 + VA, 2)
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where N[k] = H*[K]N[k)/|H[k][? ~ CA(0,0%/|H[K]?).
The effective SNR at the subcarrier k is then given by

C_EIXME) 1 HEE
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Due to the frequency-selective nature of wireless channels,
SNRy varies across subcarriers, and the average SNR is
computed as

K
1
SNRavg = 7= > SNRy. )
k=1

III. ATTENTION-DERIVED IMPORTANCE-AWARE
SUBCARRIER MAPPING

In this section, we present a novel subcarrier mapping
scheme that leverages patch-wise importance levels and CSI
to enhance semantic information delivery in OFDM systems.

A. Attention-Based Patch-Wise Importance Levels Estimation

We start by describing the process of computing patch-wise
importance levels using the attention mechanism of a pretrained
ViT. These scores quantify the relative contribution of each
image patch to the overall task performance and serve as the
basis for subsequent subcarrier mapping. Let L denote the
number of transformer layers, H the number of attention heads,
and N the total number of patches, consisting of one class
(CLS) token and N — 1 image patches. In the [-th layer and
h-th head, the attention weight between the CLS token and the
image patches is obtained as

Kk®

q(l) ( )T
ég) = softmax (CLS,\h/Eh> c Rlx(N—l)7 5)

where qgis,h € R denotes the query vector of the CLS

token, k" € RN-14 denotes the key vectors of the image
patches, and d denotes the dimension of the query and key
vectors. The final importance score for N — 1 patches is
obtained by averaging ég) over all layers and heads, i.e.,

| Lo
<
a==> al), (6)
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The resulting vector a € R'* (V=1 represents the attention-

based importance levels for all patches, which will be used for
channel-adaptive subcarrier mapping in Sec. III-B.

B. Patch-Wise Importance-Guided Channel-Aware Mapping

The attention-based patch-wise importance levels obtained
in Sec. III-A are exploited to guide the allocation of OFDM
subcarriers according to their channel quality. Each patch
consists of P x P pixels with C' = 3 color channels (RGB),
where each pixel is represented using B bits per channel. The
total number of modulated symbols required to transmit all
selected patches is expressed as

N BP?C
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Fig. 1. Visualization of attention score map and selected patches for OFDM
transmission in the single-view image classification task on the ImageNet100
dataset.

where Ny denotes the number of patches selected for trans-
mission. Selecting only the N patches with the highest
importance levels reduces transmission overhead and improves
bandwidth efficiency by eliminating semantically insignificant
content. In practical scenarios, Lgy;, typically exceeds the
number of available OFDM subcarriers K. Therefore, the
symbol sequence is first divided into multiple OFDM blocks for
transmission. Once divided, the allocation procedure begins by
sorting the set of K subcarriers in descending order of channel
gain, i.e.,

{Hsorted [m] Z;é =

mag ({H[K ) s ®)

where mag () denotes a sorting operation that arranges the
elements of the input set in descending order of magnitude,
(i.e., |Hsorted[0]] > -+ > |Hsortea[K — 1]|). Similarly, the
symbol sequences of the selected patches are given by

XD = ({X(p) }peﬂx) ; ©)
where Py C {0,1,...,N — 1} denotes the index set of the
Nx patches selected for transmission, and X () g Clsym/Nex
represents the complex symbol sequence obtained from the p-
th selected patch after quantization and M-QAM modulation.
Here, Xiggted = [Xg:r)ted[l}, . 7Xs((7)lr)ted [Leym/Nix]] T denotes
the symbol sequence corresponding to the n-th most important
patch, and att () arranges the set {X®)},cp  in descend-
ing order of the importance levels in (6).

Each selected patch requires Ly, /Nix symbols in total, but
only K /Ny symbols from each patch are transmitted in a given
OFDM block. For the highest-importance patch (i.e., n = 0),
K /Ny symbols are randomly selected from Xigzted and
mapped to the subcarriers {Hgorted[0], - - - s Hsorted [5/Nex —
1]}, corresponding to the K /Ny, largest channel gains. Con-
versely, for the lowest-importance patch (i.e., n = N — 1),
the same number of symbols are mapped to the subcarriers
{Hsorted [ K — K/Nix], . - ., Hsortea[IX — 1]}, which correspond
to the K /N smallest channel gains. The remaining patches
are mapped in the same manner, such that patches with
higher importance levels are assigned to subcarriers with higher
channel gains, thereby improving the reliability of semantically
important content delivery. This mapping and transmission pro-
cess is repeated Ly, /K times until all symbols of each patch
are transmitted. At the receiver, each OFDM block is processed
according to (2), followed by demodulation, dequantization,
and patch reassembly to reconstruct the transmitted image. The
reconstructed image is then used to perform the downstream
task at the receiver.
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Fig. 2. Comparison of the classification accuracy of different subcarrier map-
ping strategies for the single-view image classification task on the ImageNet100
dataset.

Fig. 1 illustrates the image processing and transmission
procedure of the proposed method in the single-view image
classification task on the ImageNet100 dataset. From left to
right, the figure shows the original image, the patch partitioning
stage in the ViT, the attention scores visualized as a heatmap,
and the received image after OFDM transmission. In this
example, the image is divided into NV = 196 patches. Based
on the heatmap, the Ny, = 128 patches with the highest
importance levels are selected for transmission, while the
remaining N — Ny, patches with importance levels below a
predefined threshold are omitted, as their contribution to the
target task is minimal. Consequently, the importance-aware
subcarrier mapping enables the received image to preserve
high-importance patch information robustly against channel
distortion and noise, ensuring the retention of critical content
for downstream task performance.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed importance-aware subcarrier mapping method through
simulations for a single-view image classification task on the
ImageNet100 dataset. The ViT encoder employed by both the
transmitter and receiver is the DeiT-Tiny [7], pre-trained and
fine-tuned on the ImageNet-1k dataset containing 1 million
images from 1,000 classes. Each encoder processes an input
image of size (3,224, 224), which is partitioned into N = 196
patches using a patch size of P = 16. The model consists of
L = 12 encoder layers with H = 3 attention heads. Each patch
is quantized with B = 8 bits per channel and the resulting
bitstream is modulated using 4-QAM (i.e., M = 4) before
transmission. The N, = 128 most important patches are
transmitted over an OFDM system with K = 2048 subcarriers.
The classifier is realized as a single fully connected layer and
jointly trained with the ViT encoder using the cross-entropy
loss.

For performance comparison, we consider two baseline sub-
carrier mapping strategies: random mapping and inverse map-
ping. In the random mapping strategy, each patch is assigned

to a subcarrier selected uniformly at random, irrespective of
its importance level. In the inverse mapping strategy, patches
with higher importance levels are intentionally assigned to
subcarriers with lower channel gains, while less important
patches are mapped to subcarriers with higher channel gains.

Fig. 2 compares the classification accuracies of various
subcarrier mapping strategies for the single-view image classi-
fication task on the ImageNet100 dataset. Fig. 2 shows that the
proposed mapping consistently outperforms both random and
inverse mapping schemes across the entire SNR,,, range. The
performance gap is particularly pronounced in the low-SNR
regime, where assigning high-importance patches to subcarriers
with higher channel gains enables the proposed method to
preserve critical semantic information more effectively. While
the random mapping exhibits moderate performance by dis-
regarding patch importance, the inverse mapping suffers from
severe performance degradation due to intentionally allocating
important patches to low-gain subcarriers.

V. CONCLUSION

In this paper, we have proposed a novel ViT-based
importance-aware subcarrier mapping scheme for OFDM-
based semantic communication systems. The key idea of the
proposed framework is to leverage a pretrained ViT model
to assess the importance of individual image patches and
to map high-importance patches to OFDM subcarriers with
higher channel gains. This design enables more reliable de-
livery of semantically critical information over frequency-
selective fading channels. Simulation results demonstrate that
the proposed method consistently achieves higher classification
accuracy than conventional mapping schemes, with particularly
significant gains in low-SNR scenarios, thereby ensuring more
robust semantic communication performance.
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