
Comparative Study of Lattice-Based
Post-Quantum Cryptography Algorithms from

NIST and Korea
Boyeon Song

Quantum Network Research Center
Korea Institute of Science and Technology Information

Daejeon, South Korea
bysong@kisti.re.kr

Abstract—Post-quantum cryptography (PQC) has
emerged as a critical research area for securing
communications in the quantum era. Among the selected
algorithms, lattice-based schemes have gained particular
attention due to their strong security foundations and
practical efficiency.

This paper presents a comparative analysis of lattice-
based PQC algorithms from the U.S. National Institute of
Standards and Technology (NIST) standardization process
and the Korean PQC (KpqC) competition. The evalua-
tion considers security levels, key and ciphertext/signature
sizes, and implementation performance. The results high-
light fundamental trade-offs between security, efficiency,
compactness, and implementation complexity, providing
insights into the strengths and limitations of current lattice-
based algorithms. These findings offer practical guidance
for assessing their suitability for deployment in real-world
post-quantum systems.

Index Terms—post-quantum cryptography (PQC),
lattice-based cryptography, NIST PQC standardization,
Korean PQC competition (KpqC), key size, performance.

I. INTRODUCTION

The advent of large-scale quantum computers poses a
serious threat to conventional public-key cryptographic
systems such as RSA, Diffie-Hellman, and elliptic curve
cryptography, since these schemes can be efficiently
broken by quantum algorithms. In particular, Shor’s
algorithm can solve the integer factorization and dis-
crete logarithm problems in polynomial time, thereby
rendering classical systems insecure once practical large-
scale quantum computers become available. To address
this challenge, the field of Post-Quantum Cryptography
(PQC) has emerged, focusing on algorithms that remain
secure against both classical and quantum adversaries.

In 2016, the U.S. National Institute of Standards and
Technology (NIST) launched the PQC standardization
project with the goal of selecting and standardizing
quantum-resistant Public-Key Encryptions (PKEs), Key

This research was supported by Korea Institute of Science and
Technology Information (KISTI).(No.K25L5M2C2-01)

Encapsulation Mechanisms (KEMs), and Digital Sig-
nature (DS) schemes. Subsequently, in 2021, Korea’s
National Security Research Institute and National In-
telligence Service established the Korean post-quantum
Cryptography (KpqC) research group. To strengthen na-
tional security in the quantum era, the KpqC competition
was initiated to develop Korean standard PQC schemes.

Among the various PQC families, lattice-based cryp-
tography has attracted significant attention due to its
strong security foundations and relatively efficient per-
formance across diverse platforms. In this paper, we
present a comparative analysis of lattice-based PQC
algorithms from both NIST and KpqC. Our study exam-
ines their security levels, key and ciphertext/signature
sizes, and implementation performance. Through this
comparison, we identify the strengths and limitations of
each approach, as well as their potential for adoption in
real-world systems.

The remainder of this paper is organized as follows.
Section II reviews the algorithms selected in the NIST
PQC standardization process. Section III describes the
final algorithms of the KpqC competition. Section IV
compares lattice-based KEM and DS schemes in terms
of security levels, parameter sizes and performance.
Finally, Section V concludes the paper.

II. NIST PQC ALGORITHMS

In 2016, NIST initiated a public PQC standardization
process aimed at selecting quantum-resistant public-
key cryptographic algorithms against quntum threats.
A total of 82 candidate algorithms were submitted for
consideration. After three rounds of rigorous evaluation,
NIST announced the first set of algorithms selected
for standardization on July 5, 2022: CRYSTALS-Kyber
for PKE/KEM and CRYSTALS-Dilithium, FALCON,
and SPHINCS+ for DSs. More recently, on March 11,
2025, NIST announced HQC as a fourth-round selec-

1947979-8-3315-5678-5/25/$31.00 ©2025 IEEE ICTC 2025

tion, making it the second PKE/KEM algorithm to be
standardized.

CRYSTALS-Kyber (commonly referred to as Kyber)
and CRYSTALS-Dilithium (Dilithium) are two cryp-
tographic primitives from the cryptographic suite for
algebraic lattices (CRYSTALS), a package submitted to
the NIST PQC standardization effort. Both algorithms
rely on the hardness of the Module Learning With Er-
rors (MLWE) problem and were ultimately selected for
standardization by NIST for their strong security and ex-
cellent performance. Kyber [1] is a KEM secure against
indistinguishability under adaptive chosen ciphertext at-
tacks (IND-CCA2). Dilithium is a DS designed to be
strong existential unforgeablility under chosen-message
attack (SUF-CMA) [2]. On August 13, 2024, NIST
published them as FIPS 203: Module-Lattice-Based Key
Encapsulation Mechanism (ML-KEM) and FIPS 204:
Module-Lattice-Based Digital Signature Algorithm (ML-
DSA) [3], respectively. NIST expects ML-KEM and ML-
DSA as two primary algorithms to work well in most use
cases.

Fast-Fourier Lattice-based Compact signatures Over
NTRU (FALCON) is derived from Nth degree Truncated
polynomial Ring Units (NTRU) and is based on the
Gentry–Peikert–Vaikuntanathan method for constructing
lattice-based signature schemes, combined with a trap-
door sampler known as Fast Fourier Sampling [4]. Its
security relies on the hardness of the Short Integer Solu-
tion problem over NTRU lattices. FALCON was selected
by NIST for standardization in cases where Dilithium
signatures are considered too large. Draft FIPS 206,
derived from FALCON, is currently under development
and is expected to be released in 2025.

SPHINCS+ is a stateless hash-based signature scheme
built from a hierarchy of few-time and multi-time
hash-based signature components, including the forest
of random subsets and the extended Merkle signature
scheme [5]. It was selected by NIST to provide a non-
lattice-based alternative to Dilithium and FALCON. On
August 13, 2024, NIST published SPHINCS+ as FIPS
205: Stateless Hash-Based Digital Signature Algorithm
(SLH-DSA) [6].

Hamming Quasi-Cyclic (HQC) is a code-based PKE
scheme. It achieves indistinguishability under chosen-
plaintext attacks (IND-CPA) and can be transformed
into an IND-CCA2-secure KEM using the Hofheinz,
Hovelmanns, and Kiltz transform [7]. Its security is
based on the hardness of the Syndrome Decoding prob-
lem for random Quasi-Cyclic codes. As a code-based
construction, HQC offers an alternative to ML-KEM,
which is lattice-based.

Table I provides a summary of the PQC algorithms
selected for NIST standardization, as discussed above.

TABLE I: NIST PQC Standardization Algorithms

Purpose Algorithm Category Selected

KEM CRYSTALS-Kyber Lattice-based July 2022
HQC Code-based Mar. 2025

DS
CRYSTALS-Dilithium Lattice-based

July 2022FALCON Lattice-based
SPHINCS+ Hash-based

III. KPQC ALGORITHMS

In 2021, the KpqC competition has begun for the
Korean standard PQC schemes. In November 2022, the
first round began with 7 KEM candidates and 9 DS
candidates. In December 2023, 4 KEM algorithms and
4 DS algorithms have been advanced to the second
round. The final winners of the KpqC competition were
announced in January 2025: SMAUG-T and NTRU+ for
PKE/KEMs and HAETAE and AIMer for DSs.

SMAUG-T [8] is a lattice-based KEM constructed
from the MLWE and Module Learning With Rounding
(MLWR) problems. Its long-term security relies conser-
vatively on the hardness of MLWE, while ephemeral
keys are derived more efficiently using the MLWR
framework [8]. Quantum security is ensured through
the Fujisaki-Okamoto (FO) transform with decryption-
failure handling, providing robustness against quantum
adversaries while preserving practical efficiency. The
scheme leverages the module structure (as in Kyber)
together with sparse secrets (as in homomorphic encryp-
tion), enabling faster performance and reduced ciphertext
size.

NTRU+ [9] is a recently proposed NTRU-based KEM
that addresses both the security and performance lim-
itations of the original NTRU [10]. Although NTRU
was the first practical lattice-based PKE scheme defined
over a polynomial ring, it exhibits several shortcomings,
such as difficulties in establishing worst-case to average-
case reductions under moderate modulus sizes, cumber-
some message sampling distributions, and comparatively
slower algorithms relative to other lattice-based construc-
tions [9]. To mitigate these issues, NTRU+ introduces
two generic transformations: ACWC2 (Average-Case to
Worst-Case) and FO

⊥
, a variant of the FO transform that

achieves chosen-ciphertext security without the need for
re-encryption [9].

SMAUG-T and NTRU+ thus provide lattice-based
KEM alternatives to ML-KEM, offering complementary
design strategies that address efficiency, security, and
practicality in the post-quantum setting.

Hyperball bimodal module rejection signature scheme
(HAETAE) [11] is a lattice-based DS scheme. Similar
to the NIST-selected Dilithium, it is built on the Fiat-
Shamir with Aborts paradigm, which ensures quantum
security in the quantum random oracle model. To reduce
signature sizes, HAETAE employs a bimodal distribution

1948

for rejection sampling, following the approach of the
Bimodal Lattice Signature Scheme (BLISS) [12], instead
of the unimodal distribution used in Dilithium [11].
Furthermore, HAETAE replaces the discrete Gaussian
distributions of BLISS, which are known to be vulner-
able to side-channel attacks, with uniform distributions
over hyperballs [11].

AIMer [13] is a DS scheme derived from a zero-
knowledge proof of preimage knowledge for a des-
ignated one-way function. The scheme comprises two
main components: a non-interactive zero-knowledge
proof of knowledge and the one-way function called
AIM. The AIM primitive is a symmetric construction
that is well-suited to the multi-party computation-in-the-
head paradigm and exhibits strong resistance to algebraic
attacks. The security of AIMer is grounded solely in the
robustness of its underlying symmetric primitives.

In summary, HAETAE provides an alternative lattice-
based signature scheme that complements the NIST-
selected ML-DSA and FALCON, whereas AIMer serves
as an alternative to hash-based signatures, complement-
ing the NIST-selected SLH-DSA. Table II presents a
consolidated overview of the final KpqC competition
algorithms.

TABLE II: Final KpqC Competition Algorithms

Purpose Algorithm Category Selected

KEM SMAUG-T Lattice-based

Jan. 2025NTRU+ Lattice-based

DS HAETE Lattice-based
AIMer Hash-based

IV. COMPARISON OF LATTICE-BASED PQCS

Lattice-based PQC schemes have emerged as the
leading algorithms in the NIST PQC standardization
process, offering both provable security guarantees and
competitive performance. As discussed in the preceding
sections, most of the finalists in both the NIST PQC
standardization and the KpqC competition are lattice-
based. In this section, we provide a comparative analysis
of lattice-based KEMs and DSs with respect to their
security and performance characteristics.

NIST classifies PQC algorithms according to the
range of security strengths defined by existing NIST
standards in symmetric cryptography, which are expected
to provide significant resistance against quantum crypt-
analysis. In its original Call for Proposals [14], NIST
introduced five security categories, numbered 1 through
5. These categories are based on the security strengths
of approved symmetric-key standards and are intended
to establish comparable levels of quantum-resistant secu-
rity. Category 1 corresponds to the minimum approved
security level, while category 5 represents the maximum.
Further details on these categories can be found in NIST
SP 800-57, Part 1.

A. Lattice-based KEMs

A KEM is a cryptographic scheme to establish a
shared secret key between two communicating parties,
for under certain conditions [15]. This shared secret key
can then be used for symmetric-key cryptography [16].
A KEM consists of three main algorithms: (1) a prob-
abilistic key generation algorithm, denoted by KeyGen;
(2) a probabilistic encapsulation algorithm, denoted by
Encaps; and (3) a deterministic decapsulation algorithm,
denoted by Decaps, together with a collection of param-
eter sets corresponding to different security levels [16].

ML-KEM (formerly Kyber) specifies three parameter
sets [16]: ML-KEM-512 in security category 1, ML-
KEM-768 in security category 3, and ML-KEM-1024
in security category 5. ML-KEM-512 (Kyber-512) cor-
responds to a security level roughly comparable to AES-
128, ML-KEM-768 (Kyber-768) to AES-192, and ML-
KEM-1024 (Kyber-1024) to AES-256 [16]. Specifically,
ML-KEM-512 generates an encapsulation key (EK) of
800 bytes, a decapsulation key (DK) of 1,632 bytes, and
a ciphertext (CT) of 768 bytes; ML-KEM-768 generates
an EK of 1,184 bytes, a DK of 2,400 bytes, and a CT
of 1,088 bytes; and ML-KEM-1024 generates an EK of
1,568 bytes, a DK of 3,168 bytes, and a CT of 1,568
bytes.

SMAUG-T provides three parameter sets [8]:
SMAUG-T-128 (security category 1), SMAUG-T-192
(security category 3), and SMAUG-T-256 (security
category 5). SMAUG-T-128 generates an EK of 672
bytes, a DK of 176 bytes, and a CT of 672 bytes;
SMAUG-T-192 generates an EK of 1,088 bytes, a DK of
236 bytes, and a CT of 1,024 bytes; and SMAUG-T-256
generates an EK of 1,792 bytes, a DK of 218 bytes,
and a CT of 1,472 bytes.

NTRU+KEM provides four parameter
sets [9]: NTRU+KEM576 (not considered here),
NTRU+KEM768 (security category 1), NTRU+KEM864
(security category 3), and NTRU+KEM1152 (security
category 5). NTRU+KEM768 generates an EK of 1,152
bytes, a DK of 2,336 bytes, and a CT of 1,152 bytes;
NTRU+KEM864 generates an EK of 1,296 bytes, a
DK of 2,624 bytes, and a CT of 1,296 bytes; and
NTRU+KEM1152 generates an EK of 1,728 bytes, a
DK of 3,488 bytes, and a CT of 1,728 bytes.

Table III compares the security categories (Cat.) and
the sizes of the EK, DK, and CT for the lattice-
based KEMs from NIST and KpqC, namely ML-KEM,
SMAUG-T, and NTRU+KEM. Figure 1 illustrates these
results in a bar graph, showing the EK, DK, and CT
sizes for the three schemes.

For ML-KEM, the key and ciphertext sizes scale
with the security level, ranging from 800/1,632/768
bytes at category 1 to 1,568/3,168/1,568 bytes at cat-
egory 5, reflecting the scheme’s consistent balance be-

1949

TABLE III: Sizes (in bytes) of Keys and Ciphertexts of
Lattice-based KEMs

Source Scheme Cat. EK DK CT

NIST
ML-KEM-512 1 800 1632 768
ML-KEM-768 3 1184 2400 1088
ML-KEM-1024 5 1568 3168 1568

KpqC

SMAUG-T-128 1 672 176 672
SMAUG-T-192 3 1088 236 1024
SMAUG-T-256 5 1792 218 1472
NTRU+KEM768 1 1152 2336 1152
NTRU+KEM864 3 1296 2624 1296
NTRU+KEM1152 5 1728 3488 1728

M

L

-

K

E

M

-

5

1

2

M

L

-

K

E

M

-

7

6

8

M

L

-

K

E

M

-

1

0

2

4

S

M

A

U

G

-

T

-

1

2

8

S

M

A

U

G

-

T

-

1

9

2

S

M

A

U

G

-

T

-

2

5

6

N

T

R

U

+

K

E

M

7

6

8

N

T

R

U

+

K

E

M

8

6

4

N

T

R

U

+

K

E

M

1

1

5

2

Scheme

0

500

1000

1500

2000

2500

3000

3500

S
i
z
e

(
b
y
t
e
s
)

Key/Ciphertext Type

EK

DK

CT

Fig. 1: Size comparison of keys and ciphertexts for
lattice-based KEMs

tween compactness and security. SMAUG-T achieves
notably smaller decapsulation key sizes compared to
ML-KEM and NTRU+KEM, particularly at higher se-
curity categories, where its DK size remains under
300 bytes. This design significantly reduces memory
requirements for secret key storage. NTRU+KEM, by
contrast, provides slightly larger EK, DK and CT sizes
compared to ML-KEM.

In [8], the performance of Kyber and SMAUG-T was
evaluated on a single core of an Intel(R) Core(TM) i7-
10700K processor at 3.80 GHz with 64 GB of RAM,
running Debian GNU/Linux (kernel 5.4.0) and compiled
with gcc version 11.4.0. The experiments adhered to
the measurement methodology described in [8], with
identical settings applied to both schemes.

Table IV presents benchmark results for Kyber and
SMAUG-T across three parameter sets. Performance is
evaluated for KeyGen (KG), Encaps (Enc), and Decaps
(Dec) using both the baseline C reference implemen-
tation and an optimized implementation that leverages
AVX2 vector instructions.

The reference results indicate that SMAUG-T achieves
slightly lower cycle counts than Kyber for both Encaps
and Decaps (e.g., 100k vs. 158k for Enc, and 136k
vs. 187k for Dec at security category 1). The AVX2-
optimized benchmarks demonstrate substantial efficiency
improvements for both schemes, reducing cycle counts
by factors of 4–6. In this optimized setting, SMAUG-
T offers lower Encaps costs across all parameter sets,

TABLE IV: Performance (in CPU kilocycles) of Kyber
and SMAUG-T [8]

Scheme KG Enc Dec KG Enc Dec
Reference AVX2

Kyber-512 128 158 187 27 39 29
Kyber-768 209 255 286 44 65 44
Kyber-1024 321 369 414 60 79 63
SMAUG-T-128 110 100 136 38 23 35
SMAUG-T-192 219 204 253 57 46 61
SMAUG-T-256 357 334 414 77 65 86

highlighting its advantage in ephemeral key operations
(e.g., 23k cycles for SMAUG-T-128 vs. 39k cycles for
Kyber-512). In contrast, Kyber achieves lower costs for
both KeyGen and Decaps (e.g., 27k and 29k cycles for
KG and Dec in Kyber-512 vs. 38k and 35k cycles in
SMAUG-T-128).

In [9], the performance of Kyber and NTRU+KEM
was implemented on a single core of an Intel(R)
Core(TM) i7-8700K (Coffee Lake) processor at 3.70
GHz with 16 GB of RAM, compiled with gcc version
11.4.0. Identical settings were applied to both schemes
to ensure fairness in comparison.

Table V presents the benchmark results of Kyber and
NTRU+KEM under reference and AVX2-optimized im-
plementations across different parameter sets. Execution
time was measured as the average cycle count over
100,000 executions for each algorithm [9].

TABLE V: Performance (in CPU kilocycles) of Kyber
and NTRU+KEM [9]

Scheme KG Enc Dec KG Enc Dec
Reference AVX2

Kyber-512 116 137 158 36 39 24
Kyber-768 182 202 230 51 55 37
Kyber-1024 270 321 359 65 73 52
NTRU+KEM768 192 101 121 26 27 16
NTRU+KEM864 238 123 148 28 30 19
NTRU+KEM1152 370 162 196 41 39 26

In the reference implementation, Kyber exhibits
lower KeyGen costs at equivalent security levels
(e.g., 116k cycles for Kyber-512 vs. 192k cycles for
NTRU+KEM768), whereas NTRU+KEM achieves lower
Encaps and Decaps costs across all parameter sets.
For instance, NTRU+KEM768 requires only 101k cy-
cles for Encaps compared to 137k cycles for Kyber-
512, and 121k cycles for Decaps compared to 158k
cycles for Kyber-512. In the optimized AVX2 setting,
both schemes demonstrate substantial performance im-
provements, with reductions by factors of 3–6. Notably,
NTRU+KEM consistently outperforms Kyber, achieving
the lowest cycle counts across all operations; for ex-
ample, NTRU+KEM1152 requires 41k/39k/26k cycles
for KG/Enc/Dec, compared with 65k/73k/52k cycles for
Kyber-1024.

1950

B. Lattice-based DSs

A DS consists of three main algorithms: (1) a prob-
abilistic key generation algorithm, denoted by KeyGen;
(2) a probabilistic signing algorithm, denoted by Sign;
and (3) a deterministic verification algorithm, denoted
by Verify, together with a collection of parameter sets.

ML-DSA (formerly Dilithium) provides three param-
eter sets in the form ML-DSA-kl, where (k, l) are the
dimensions of the matrix A, a part of the public key [3].
The parameter set ML-DSA-44 is claimed to be in
security strength category 2 which generates a private
key (SK) of 2,560 bytes, a public key (PK) of 1,312
bytes and a signature (Sig) of 2,420 bytes. ML-DSA-65
is claimed to be in category 3, which generates a SK
of 4,032 bytes, a PK of 1,952 bytes and a Sig of 3,309
bytes. ML-DSA-87 is claimed to be in category 5 which
generates a SK of 4,896 bytes, a PK of 2,592 bytes and
a Sig of 4,627 bytes.

FALCON provides two parameter sets. FALCON-512
has an equivalent security to category 1, which generates
a SK of 1,281 bytes, a PK of 897 bytes and a Sig of
666 bytes. FALCON-1024 has an equivalent security to
category 5, gives a SK of 2,305 bytes, a PK of 1,793
bytes and a Sig of 1,280 bytes [4]. For comparison,
FALCON-512 is roughly equivalent, in classical security
terms, to RSA-2048, whose signatures and public keys
are each 256 bytes in size [4].

HAETAE is specified with three parameter sets, each
corresponding to a distinct security level. HAETAE-120
parameter set is assigned to security strength category 2
and generates a SK of 1,408 bytes, a PK of 992 bytes,
and a Sig of 1,474 bytes. HAETAE-180 parameter set
corresponds to security strength category 3 and generates
a SK of 2,112 bytes, a PK of 1,472 bytes, and a
Sig of 2,349 bytes. Finally, HAETAE-260 parameter
set is associated with security strength category 5 and
generates a SK of 2,752 bytes, a PK of 2,080 bytes, and
a Sig of 2,948 bytes [11].

Table VI compares the security categories (Cat.) and
the sizes of the SK, PK, and Sig for the lattice-based
DSs, namely ML-DSA, FALCON, and HAETAE, from
NIST and KpqC. Figure 2 illustrates these results in a
bar graph, showing the SK, PK, and Sig sizes for the
three schemes.

HAETAE achieves substantially smaller key and sig-
nature sizes than ML-DSA across all parameter sets. For
instance, under the category 5 parameter set, HAETAE-
260 requires 2,752 bytes, 2,080 bytes, and 2,948 bytes
for the SK, PK, and Sig, respectively, whereas ML-DSA-
87 requires 4,896 bytes, 2,592 bytes, and 4,627 bytes.
FALCON provides the most compact signatures, with a
Sig size of just 1,280 bytes at category 5, and also yields
the smallest SK and PK sizes; 2,305 bytes, 1,793 bytes
and 1,280 bytes, respectively, for FALCON-1024.

TABLE VI: Sizes (in bytes) of Keys and Signatures for
Lattice-based DSs

Source Scheme Cat. SK PK Sig

NIST
ML-DSA-44 2 2560 1312 2420
ML-DSA-65 3 4032 1952 3309
ML-DSA-87 5 4896 2592 4627

KpqC
HAETAE-120 2 1408 992 1474
HAETAE-180 3 2112 1472 2349
HAETAE-260 5 2752 2080 2948

NIST FALCON-512 1 1281 897 666
FALCON-1024 5 2305 1793 1280

M

L

-

D

S

A

-

4

4

M

L

-

D

S

A

-

6

5

M

L

-

D

S

A

-

8

7

H

A

E

T

A

E

-

1

2

0

H

A

E

T

A

E

-

1

8

0

H

A

E

T

A

E

-

2

6

0

F

A

L

C

O

N

-

5

1

2

F

A

L

C

O

N

-

1

0

2

4

Scheme

0

1000

2000

3000

4000

5000

S
i
z
e

(
b
y
t
e
s
)

Key/Signature Type

SK

PK

Sig

Fig. 2: Size comparison of keys and signatures for
lattice-based DSs

In summary, ML-DSA incurs comparatively larger
SK, PK, and Sig sizes; HAETAE offers moderate sizes
across all parameter sets; and FALCON achieves the
most compact overall footprint, particularly in signature
size.

In [11], the performance of Dilithium, HAETAE, and
FALCON were compared on a single core of an Intel(R)
Core(TM) i7-10700K processor, with TurboBoost and
hyperthreading disabled.

Table VII reports the average cycle counts of 1,000 ex-
ecutions for each parameter set of Dilithium, HAETAE,
and FALCON for the reference implementations along
with the AVX2-optimized implementations.

Across all parameter sets, the reference implementa-
tions incur substantially higher cycle counts than their
AVX2-optimized counterparts, underscoring the effi-
ciency gains enabled by vectorized instructions.

Among the schemes, Dilithium demonstrates balanced
performance, with moderate costs for KeyGen, Sign, and
Verify. In the AVX2 setting, its Verify operations remain
particularly efficient. HAETAE, by contrast, exhibits
significantly higher costs for both Sign and KeyGen in
both reference and optimized implementations, though
its Verify times remain on par with those of Dilithium.
FALCON stands out for its extremely high KeyGen costs
across both implementations. However, it compensates
with the smallest Verify time in the reference setting
and competitive Verify times under AVX2 optimization,
aided by its significantly smaller signature sizes.

1951

TABLE VII: Performance (in CPU kilocycles) of Dilithium, HAETAE, and FALCON [11]

Source Scheme KeyGen Sign Verify KeyGen Sign Verify
Reference AVX2

NIST
Dilithium-2 343,639 1,527,406 376,543 86,937 252,905 92,190
Dilithium-3 630,607 2,603,237 612,852 146,688 402,012 148,883
Dilithium-5 949,662 3,080,734 988,250 233,895 484,119 232,241

KpqC
HAETAE-120 1,827,567 9,458,682 376,631 733,350 1,916,063 108,890
HAETAE-180 3,448,185 11,611,868 692,014 1,122,867 2,198,920 167,787
HAETAE-260 4,088,383 17,229,712 896,622 1,202,911 3,013,239 207,229

NIST FALCON-512 60,301,272 17,335,484 103,184 26,637,878 863,420 100,709
FALCON-1024 178,516,059 38,009,559 224,840 78,797,658 1,740,520 228,326

V. CONCLUSION

In this paper, we have presented a comparative analy-
sis of lattice-based PQC algorithms selected by NIST
and the KpqC competition: ML-KEM (Kyber) from
NIST, together with SMAUG-T and NTRU+KEM from
KpqC for KEMs; and ML-DSA (Dilithium) and FAL-
CON from NIST, along with HAETAE from KpqC
for DSs. Our study has evaluated encapsulation and
decapsulation key sizes and ciphertext sizes for KEMs,
private and public key sizes and signature sizes for DSs,
as well as performance benchmarks under both reference
and AVX2-optimized implementations.

For KEMs, Kyber demonstrates a balanced design,
offering moderate key and ciphertext sizes alongside
moderate performance. SMAUG-T achieves a notable
reduction in decapsulation key size and highly ef-
ficient encapsulation in the AVX2-optimized setting.
NTRU+KEM, while requiring slightly larger parameters,
delivers the best overall efficiency under optimization.

For DS schemes, Dilithium yields the largest key and
signature sizes among the three but maintains balanced
efficiency across KeyGen, Sign, and Verify. HAETAE
achieves smaller keys and signatures than Dilithium, yet
incurs significantly higher costs for KeyGen and Sign.
FALCON produces the most compact signatures and the
smallest key sizes, though this comes at the expense of
substantially higher KeyGen overhead.

Overall, these results highlight the inherent trade-offs
among security level, efficiency, compactness, and im-
plementation performance in lattice-based cryptographic
schemes. Such observations offer valuable guidance for
evaluating their practicality and suitability for real-world
deployment in the post-quantum era.

REFERENCES

[1] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyuba-
shevsky, J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehle,
“CRYSTALS-Kyber algorithm specifications and supporting doc-
umentation,” January 31, 2021, version 3.01.

[2] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe,
G. Seiler, and D. Stehlé, “CRYSTALS-Dilithium: Algorithm
specifications and supporting documentation,” February 8, 2021,
version 3.1.

[3] “Module-Lattice-Based Key-Encapsulation Mechanism Stan-
dard,” National Institute of Standards and Technology, Tech. Rep.
Federal Information Processing Standards (FIPS) 204, August 13,
2024.

[4] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky,
T. Pornin, T. Prest, T. Ricosset, G. Seiler, W. Whyte, and
Z. Zhang, “FALCON: Fast-Fourier lattice-based compact signa-
tures over NTRU specification,” October 1, 2020, v.1.2.

[5] J.-P. Aumasson, D. J. Bernstein, W. Beullens, C. Dobraunig,
M. Eichlseder, S. Fluhrer, S.-L. Gazdag, A. Hulsing, P. Kam-
panakis, S. Kolbl, T. Lange, M. M. Lauridsen, F. Mendel,
R. Niederhagen, C. Rechberger, J. Rijneveld, P. Schwabe, and
B. Westerbaan, “SPHINCS+,” June 10, 2022, v.3.1.

[6] “Module-Lattice-Based Key-Encapsulation Mechanism Stan-
dard,” National Institute of Standards and Technology, Tech. Rep.
Federal Information Processing Standards (FIPS) 205, August 13,
2024.

[7] P. Gaborit, C. Aguilar-Melchor, N. Aragon, S. Bettaieb,
L. Bidoux, O. Blazy, J.-C. Deneuville, E. Persichetti, G. Ze-
morand, J. Bos, A. Dion, J. Lacan, J.-M. Robert, P. Veron,
P. L. Barreto, S. Ghosh, S. Gueron, T. Guneysu, R. Misoczki,
J. Richter-Brokmann, N. Sendrier, J.-P. Tillich, and V. Vasseur,
“Hamming Quasi-Cyclic (HQC),” February 19, 2025, fourth
round version.

[8] J. H. Cheon, H. Choe, J. Choi, D. Hong, J. Hong, C.-G. Jung,
H. Kang, J. Lee, S. Lim, A. Park, S. Park, H. Seong, , and J. Shin,
“SMAUG-T: the key exchange algorithm based on Module-LWE
and Module-LWR,” February 23, 2024, version 3.0.

[9] J. Kim and J. H. Park, “NTRU+: Compact construction of NTRU
using simple encoding method,” October 10, 2024, version 2.2.1.

[10] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-
based public key cryptosystem,” in Algorithmic Number Theory,
J. P. Buhler, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1998, pp. 267–288.

[11] J. H. Cheon, H. Choe, J. Devevey, T. Güneysu, D. Hong,
M. Krausz, G. Land, M. Möller, D. Stehlé, and M. Yi, “HAETAE:
Shorter lattice-based Fiat-Shamir signatures,” https://hmchoe05
28.github.io/assets/manuscripts/HAETAE spec 24.07.04 v3.0.
pdf, July 4, 2024, version 3.0.

[12] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky, “Lattice
signatures and bimodal Gaussians,” in Advances in Cryptology –
CRYPTO 2013, ser. LNCS, R. Canetti and J. Garay, Eds. Berlin,
Heidelberg: Springer, 2013, pp. 40–56.

[13] S. Kim, J. Ha, M. Son, B. Lee, D. Moon, J. Lee, S. Lee, J. Kwon,
J. Cho, H. Yoon, and J. Lee, “The AIMer signature scheme,”
https://aimer-signature.org/docs/AIMer-specification-v2.1.pdf,
July 12, 2024, version 2.1.

[14] National Institute of Standards and Technology, “Submission
requirements and evaluation criteria for the post-quantum cryp-
tography standardization process,” 2016.

[15] “Recommendations for key-encapsulation mechanisms,” National
Institute of Standards and Technology, Tech. Rep. NIST Special
Publication (SP) 800-227, 2024.

[16] “Module-Lattice-Based Key-Encapsulation Mechanism Stan-
dard,” National Institute of Standards and Technology, Tech. Rep.
Federal Information Processing Standards (FIPS) 203, August 13,
2024.

1952

