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Abstract—Obtaining accurate CSI in frequency division du-
plexing (FDD) systems is a challenging problem due to the
extensive feedback overhead. Applying a precoder to the CSI ref-
erence signal (CSI-RS) reduces feedback overhead and improves
the reception of the CSI-RS. However, fully digital precoding
dedicates RF chains for each antenna, which makes massive
MIMO with a large antenna array expensive. Hybrid precoding
has attracted increasing interest as a practical solution that
reduces the number of RF chains. Operating in analog and
digital domains introduces additional constraints on the design
of the precoder. In this paper, we propose a codebook design
for wideband FDD massive MIMO hybrid precoding systems.
We formulate the precoding design problem as a sparsity-
constrained matrix reconstruction problem. Using orthogonal
matching pursuit (OMP), we develop a wideband precoding
algorithm that approximates unconstrained partial channel reci-
procity precoding using a smaller number of RF chains than
the total number of antennas. We present simulation results that
exhibit the hybrid precoding shows a slight performance gap
compared to unconstrained precoding.

Index Terms—Massive MIMO, FDD, hybrid precoding, com-
pressive sensing

I. INTRODUCTION

With the global deployment of 5G networks, research has
already shifted toward the development of sixth-generation
(6G) wireless systems. 6G is envisioned to support immersive
services such as extended reality (XR), holographic communi-
cations, and large-scale Internet of Things (IoT), while achiev-
ing targets like sub-millisecond latency, terabit-per-second data
rates, and native integration of sensing and communications
[1], [2]. These ambitious goals have stimulated extensive
research across various scenarios, including new approaches to
channel coding [3]–[5], reliability enhancement for mission-
critical services [6], [7], and efficient spectrum utilization
[8], [9]. Among these efforts, massive MIMO continues to
play a central role, providing the foundation for meeting
6G performance requirements. Massive MIMO improves data
rates through increased spectral efficiency. The improvement
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is enabled by the beamforming, interference rejection, and
spatial multiplexing capabilities of massive MIMO [10]. The
downlink (DL) channel state information (CSI) at the base
station (BS) is crucial to perform these massive MIMO ca-
pabilities. Initially, massive MIMO was designed in a time
division duplexing (TDD) system [11]. Relying on channel
reciprocity, TDD massive MIMO systems eliminate the need
for CSI feedback.

Frequency-division duplexing (FDD) wireless networks are
still widely used in many existing systems and are expected
to continue in the next generation. Unfortunately, FDD faces
greater challenges due to the absence of full channel reci-
procity. In this system, the user equipment (UE) needs to feed
back DL CSI to the BS. The use of a large number of antennas
in massive MIMO results in a significant feedback overhead.
Therefore, CSI feedback in FDD massive MIMO becomes
challenging.

Several research works have investigated methods to reduce
the significant overhead of CSI feedback in FDD massive
MIMO. The works in [12], [13] use the compressive sensing
(CS) technique to compress the number of pilot training
and feedback. The deep learning method has been proposed
for solving the CSI feedback problem in [14]–[16]. Partial
reciprocity in the angular domain and channel sparsity are
utilized in other CSI feedback methods. BS can use the
information of the channel covariance matrix (CCM) [17]–[19]
and angle of departure (AoD) [20], [21] to reduce feedback
overhead.

The large antenna array in a massive MIMO system also
introduces high cost and power consumption when imple-
mented using dedicated RF chains for each antenna or fully
digital precoding. Hybrid precoding is a practical solution that
reduces the number of RF chains by dividing precoding into
two stages [22]. The digital precoding stage is performed in
baseband processing, allowing for the flexibility to control the
magnitude and phase of all subcarriers. Analog precoding in
the RF domain is typically implemented using phase shifters,
which introduce new hardware constraints for hybrid precod-
ing. The analog precoder is common for all subcarriers, and
all elements have a constant magnitude. The works in [17]–
[21] do not address the high-cost implementation of a massive
MIMO system. In terms of performance, the partial channel
reciprocity codebook [19] outperforms the Rel-16 5G code-

1667979-8-3315-5678-5/25/$31.00 ©2025 IEEE ICTC 2025



Fig. 1. A block diagram of an OFDM-based hybrid massive MIMO system.

book with lower overhead and higher received signal-to-noise
ratio (SNR) of the CSI reference signal (CSI-RS). However,
the partial-channel reciprocity codebook is not specialized in
reducing the number of RF chains in massive MIMO.

The benefit of hybrid precoding motivates us to develop a
codebook that works with a reduced number of RF chains
while maintaining accurate CSI feedback. In this paper, we
focus on designing codebooks for wideband FDD massive
MIMO hybrid precoding. We first derive the unconstrained
wideband FDD massive MIMO precoder based on the partial-
channel reciprocity codebook. Then, we develop a wideband
hybrid precoding algorithm to approximate the unconstrained
precoder. The approximation is formulated as a sparsity-
constrained matrix reconstruction problem, which is solved
using orthogonal matching pursuit (OMP) by exploiting the
limited scattering of the channel.

Notations: A is a matrix; a is a vector; a is a scalar; A(i) is
the i-th column of A; [A]i,j is the element in the i-th row and
the j-th column of matrix A; (·)T and (·)H denote transpose
and conjugate transpose respectively; ∥A∥F is the Frobenius
norm of A and ∥a∥p denotes the p-norm of vector a; diag(A)
is a vector of diagonal elements of A; zeros(N,M) is a N×M
zero matrix; IN is the N ×N identity matrix; CN (a,A) is a
complex Gaussian vector with mean a and covariance matrix
A; E{·} denotes the expectation; Cx×y denotes x×y complex
space.

II. SYSTEM MODEL

Consider the OFDM-based CSI feedback system model in
Fig. 1 where a single UE with Nr uniform linear array (ULA)
antenna is connected to a BS with Nt antennas and NRF RF
chains. BS transmits Na ports of the CSI reference signal
(CSI-RS) multiplexed on multiple subcarriers such that NRF ≤
Nt. The entire bandwidth is partitioned into Nf subbands,
each consisting of a group of subcarriers.

The BS is assumed to use a single-polarization uniform
planar array (UPA) on the yz plane with Ny and Nz elements
on the y and z axes, respectively. The total number of
BS antennas is Nt = NyNz . Denoting the azimuth of the
departure angle (AOD) and the zenith of the departure angle

(ZOD) by φAOD and θZOD, respectively, we can write the
steering vector for this UPA antenna as

a(φ, θ) =
1√
Nt

[1, . . . , ej
2π
λ d(m sinφ sin θ+n cos θ),

. . . , ej
2π
λ d((Ny−1) sinφ sin θ+(Nz−1) cos θ)]T , (1)

where λ is the wavelength of the center frequancy, and d is
the spacing between the antenna elements. 0 < m < Ny − 1
and 0 < n < Nz − 1 are the y and z indices of an antenna
element, respectively.

In the baseband, the reference signal in each subband k =
1, · · · , Nf is precoded using the baseband precoder FBB,k ∈
CNRF×Na , then modulated into a signal in the time domain.
In the time domain, the analog precoder FRF ∈ CNt×NRF is
applied to the signal. Note that the analog precoder FRF is
common for all subbands. The precoded baseband CSI-RS in
the k-th subband is

xk = FRFFBB,ksk, (2)

where sk ∈ CNa×1 is the non-precoded CSI-RS in subband
k, such that E[sksHk ] = P

KNa
INa , and P is the average total

non-precoded CSI-RS power. Since the analog precoder FRF

is implemented using a phase shifter, it has a constant modulus
constraint |[FRF]i,j |2 = N−1

t . Denote the channel matrix in
subband k as Hk(t) ∈ CNr×Nt , and the received signal at
subband k can be expressed as

yk(t) = Hk(t)FRFFBB,ksk + nk(t), (3)

where nk(t) ∼ CN (0, σ2
nINr ) is the additive white Gaussian

noise (AWGN) with noise variance σ2
n.

The hybrid precoder for all subbands can be concatenated
into the overall hybrid precoding matrix W ∈ CNa×NtNf as

W =




FRFFBB,1

FRFFBB,2

...
FRFFBB,Nf




T

. (4)

The row of the overall hybrid precoding matrix Wn ∈
C1×NtNf for a port n = 1, · · · , Na is assumed to have a unit
norm ||Wn|| = 1. Similar to the partial channel reciprocity
codebook [19], the UE performs a summation of the received
signal in the frequency domain as

y(t) =

Nf�
k=1

yk(t) (5)

= sWH(t) + n(t) (6)

where

s =

Nf�
k=1

sTk , (7)

n(t) =

Nf�
k=1

nT
k (t). (8)
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and H(t) ∈ CNtNf×Nr is the concatenated wideband channel:

H(t) =
�
H1(t),H2(t), . . . ,HNf

(t)
�T

. (9)

The effective channel matrix G(t) ∈ CNa×Nr is defined as

G(t) = WH(t). (10)

The UE then obtains the estimate of the effective channel Ĝ(t)
based on the non-precoded reference signal s, and feeds back
the estimated vector to the BS. BS estimates DL CSI using
information from the estimated effective channel Ĝ(t) and the
overall hybrid precoding matrix W as

Ĥ(t) = WHĜ(t). (11)

III. CODEBOOK DESIGN

This section presents a CSI feedback method for the system
shown in Fig. 1. First, we derived the unconstrained codebook
based on the partial reciprocity channel. We then develop
a wideband hybrid precoding algorithm to approximate the
unconstrained codebook using OMP.

A. Unconstrained Codebook

The angular reciprocity properties of the FDD channel allow
the estimation of the DL CCM through the projection method
in a Hilbert space [23]. The joint spatial-frequency CCM is
defined as

R = E
�
(H(t))(H(t))H

�
. (12)

We assumed that this covariance matrix is available for code-
book design. The conversion from uplink to downlink CCM
is enabled by the partial reciprocity properties. The partial
reciprocity codebook exploits the low-rank property of the
CCM to reduce the amount of feedback overhead [19]. The set
of precoders for the codebook is derived from the dominant
eigenvectors obtained through eigenvalue decomposition of the
channel covariance matrix. The eigenvalue decomposition can
be written as

R = UΣUH , (13)

where U is a matrix of eigenvectors of R:

U =
�
u1,u2, . . . ,uNtNf

�
. (14)

Each eigenvector in U corresponds to an eigenvalue ordered
from the largest value in the diagonal entries of the diagonal
matrix Σ. The low-rank property of the covariance matrix
R indicates that signal paths with significant power are only
transmitted in limited directions. The eigenvectors and eigen-
values represent the directions and the powers, respectively.
We select the Na eigenvectors with the highest eigenvalues
from the matrix U as

WUC =




uH
1

uH
2
...

uH
Na


 . (15)

The unconstrained precoding matrix WUC ∈ CNa×NtNf

can be applied to CSI-RS by OFDM precoding fully in

the digital domain. The unconstrained precoding matrix has
the flexibility to control the magnitude and phase of the
signal in the digital domain. We can rewrite the unconstrained
precoding matrix WUC as

WUC =




FUC
1

FUC
2
...

FUC
Nf




T

. (16)

where FUC
k ∈ CNt×Na is the unconstrained precoder matrix

for subband k.

B. Codebook Design for Hybrid Precoding

The hybrid precoding design is subject to the following
system constraints:

1) NRF ≤ Nt,
2) The analog precoder FRF is common for all subbands,

and
3) |[FRF]i,j |2 = N−1

t .

Based on these constraints, we design a hybrid precoder
that approximates the unconstrained precoder and satisfies the
constraints. The approximation problem can be written as

argmin
FRF,{FBB,k}

Nf
k=1

Nf�
k=1

��FUC
k − FRFFBB,k

��
F
, (17)

s.t. FRF ∈ FRF,
Nf�
k=1

∥FRFFBB,k∥2F ≤
Nf�
k=1

��FUC
k

��2
F
,

where FRF is the set of feasible RF precoders, i.e., the set
of matrices with constant magnitude entries. The problem
is to find FRF and {FBB,k}

Nf

k=1 that minimizes the sum of
the Frobenius norm of difference between the unconstrained
precoder FUC

k and FRFFBB,k for the entire Nf subband. This
approximation is reasonable for designing the hybrid precoder
[24].

The simple way to find a vector to build the analog precoder
FRF is by selecting NRF vectors from a set of steering
vectors. A steering vector a(φ, θ) satisfies the constraint of a
constant modulus |[FRF]i,j |2 = N−1

t . We sample the steering
vector angles (φl, θl) uniformly from the 3D space where
l = 1, . . . , Ndict and Ndict is the total number of steering
vector samples in the directions. The steering vector samples
construct a dictionary matrix:

At = [a(φ1, θ1),a(φ2, θ2), . . . ,a(φNdict
, θNdict

)] . (18)
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The problem (17) can be rewritten as

argmin
{F̃BB,k}

Nf
k=1

Nf∑
k=1

∥∥∥FUC
k −AtF̃BB,k

∥∥∥
F
, (19)

s.t.

∥∥∥∥∥∥

Nf∑
k=1

(
diag

(
F̃BB,kF̃

H
BB,k

))
∥∥∥∥∥∥
0

= NRF, (20)

∥∥∥AtF̃BB,k

∥∥∥
2

F
≤

∥∥FUC
k

∥∥2
F
, ∀k, (21)

where F̃BB,k ∈ CNdict×Na is an auxiliary variables matrix.
We obtain FRF and FBB,k from At and F̃BB,k. The constraint
in (20) restricts F̃BB,k to have only NRF rows with non-zero
elements, which implies that only NRF steering vectors are
selected from At.

The problem (17) is reformulated as a standard sparsity-
constrained matrix reconstruction problem (19), which can
be solved using OMP. To solve the problem in (19), we
extend the spatially sparse precoding algorithm in [24] to
Algorithm 1. The algorithm begins with the first subband,

Algorithm 1 Wideband Hybrid Precoding via Orthogonal
Matching Pursuit (OMP)

Require: {FUC
k }Nf

k=1,At, NRF, Nt

1: for k = 1, . . . , Nf do
2: if k = 1 then
3: FRF = zeros(Nt, NRF)
4: Fres = FUC

k

5: for i = 1, . . . , NRF do
6: Ψ = AH

t Fres

7: m = argmaxl=1,...,Ndict
(ΨΨH)l,l

8: F
(i)
RF = A

(m)
t

9: FBB,k =
(
FH

RFFRF
)−1

FH
RFF

UC
k

10: Fres =
FUC

k −FRFFBB,k

∥FUC
k −FRFFBB,k∥

F

11: end for
12: else
13: FBB,k =

(
FH

RFFRF
)−1

FH
RFF

UC
k

14: end if
15: end for
16: return FRF, {FBB,k}

Nf

k=1

k = 1. The projection of the unconstrained precoder FUC
k=1

on the dictionary matrix At is computed, then the steering
vector a(φl, θl), 1 ≤ l ≤ Ndict with highest projection is
selected. The algorithm inserts the steering into the FRF. The
FBB,k=1 is calculated by least square solutions, and the Fres

is updated by removing the contribution of the selected vector.
It continues until the NRF steering vectors are selected. For the
next subband k = 2, . . . , Nf , the FBB,k is computed using the
least squares solution using the FRF obtained from the first
subband. The algorithm returns FRF and {FBB,k}

Nf

k=1 as the
final output.

Fig. 2. The normalized mean square error vs. NRF, Nt = 128.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
algorithm using a practical 3GPP channel model. We adopt the
CDL-A channel model [25] with 23 clusters and 20 paths for
each cluster. The delay spread is 300 ns, and the maximum
Doppler shift is 9.72 Hz. We consider a frequency center at
3.5 GHz. The subcarrier spacing is 30 kHz, and the number
of subbands is Nf = 25. We consider a single-polarization
antenna in the BS and the UE. The number of UEs (Nu)
is 4 with Nr = 2 for each UE. Each UE antenna needs
Na coefficients to feed back. We set the number of CSI-RS
antenna ports as Na = 16. The number of steering vectors in
the dictionary matrix is Ndict = 1000.

Fig. 2 shows the impact of the number of RF chains on
the accuracy of the CSI feedback in normalized mean square
error (NMSE) with BS antennas Nt = 128. The NMSE is
computed as

NMSE = E

{
∥H− Ĥ∥2F

∥H∥2F

}
, (22)

averaged over time, frequency, and number of UEs. NMSE
performance is evaluated with different numbers of NRF ∈
[16, 32]. The figure compares the proposed hybrid OMP
method with the full digital method and the hybrid phase
extraction alternating minimization (PE-AltMin) method [26].
The NMSE for the proposed hybrid OMP method approaches
that of full digital precoding as NRF increases, whereas the
hybrid PE-AltMin remains relatively constant.

We evaluate spectral efficiency using zero forcing (ZF)
precoding [27] derived from the estimated CSI. Each UE re-
ceives two data streams. For fair evaluation and simplicity, we
assume that the ZF precoding is implemented in fully digital
precoding. For a more realistic scenario, a hybrid precoding
algorithm should be used to evaluate the spectral efficiency.
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Fig. 3. The spectral efficiency vs. SNR, Nt = 128.

The spectral efficiency when Nt = 128 and NRF = 32 is
shown in Fig. 3. The spectral efficiency is computed as

Nu∑
u=1

log2(1 + SINRu), (23)

averaged over time and frequency, where SINRu is the signal-
to-interference-plus-noise ratio for the u-th UE. The figure
shows that the performance of hybrid precoding is close to
the full digital precoding. The unconstrained partial channel
reciprocity precoding achieves high spectral efficiency with
a reasonable amount of feedback 2Na [19]. The proposed
hybrid precoding algorithm reduces the number of RF chains
(NRF) while maintaining performance, making massive MIMO
implementation more practical, even with a large number of
BS antennas.

Finally, we investigate the impact of the size of the dic-
tionary matrix. Fig. 4 shows the spectral efficiency for Ndict

values of 400, 700, and 1000. The hybrid OMP algorithm
selects the analog precoder vector from a set of steering
vectors in the dictionary matrix. The spectral efficiency is
better with a larger number of steering vector samples.

V. CONCLUSION

In this paper, we have proposed a codebook design for wide-
band FDD massive MIMO hybrid precoding systems. First, we
derived the unconstrained partial channel reciprocity precoding
that compresses the number of CSI feedback coefficients.
We approximated the unconstrained precoding as a sparsity-
constrained matrix reconstruction problem. We then designed
wideband hybrid precoding using the OMP algorithm to find
the optimal hybrid precoding. We presented simulation results
that show the hybrid precoding achieved a performance close
to that of the unconstrained precoding. In the future, we will
evaluate the performance of a wideband massive MIMO hybrid
precoding system with the proposed CSI feedback method

Fig. 4. The spectral efficiency vs. SNR with different sizes of dictionary
matrix, Nt = 128.

to investigate the feasibility of implementing wideband FDD
massive MIMO hybrid precoding systems.
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