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Abstract—Vehicle-to-Everything (V2X) cooperative perception
in autonomous driving is attracting increasing attention as a
means to overcome the limitations of individual vehicle sensors
and expand the perception range. Achieving this objective re-
quires precise alignment of heterogeneous sensor information
into a unified coordinate system. However, unlike conventional
registration problems, V2X environments present unique chal-
lenges such as low overlap, sensor asymmetry, and limited com-
munication bandwidth. In this study, we systematically evaluate
representative alignment approaches under the V2X scenario
using the DAIR-V2X dataset. The experimental results reveal
that while each method shows certain advantages, they also
exhibit significant limitations in terms of robustness, accuracy,
and communication efficiency under realistic conditions. These
findings highlight that although registration techniques are well
established in general robotics, they are not directly transferable
to V2X environments, motivating further research into robust
and communication-aware solutions for reliable V2X data align-
ment.

Index Terms—Vehicle-to-Everything (V2X), Cooperative Per-
ception, Point Cloud Registration, Autonomous Driving

I. INTRODUCTION

With the advancement of autonomous driving technology,
V2X cooperative perception has gained significant attention
as a key enabler for improving traffic safety and efficiency
beyond the sensing limitations of individual vehicles. By shar-
ing information from different viewpoints between vehicles
and infrastructure, perception can be extended into occluded
regions, enabling early risk detection. However, for such
cooperative perception to function effectively, both platforms
must integrate their information within a common coordinate
system. This requires reliable data alignment, which is par-
ticularly challenging in real-world scenarios due to difficulties
in hardware synchronization and limited point cloud overlap
caused by position and field-of-view differences.

While most existing V2X cooperative perception studies
have concentrated on downstream tasks such as object detec-
tion, tracking, and BEV representation learning, they typically
assume that data alignment has already been achieved. In
practice, however, alignment in V2X is far more difficult than
in conventional single-agent setups. Sensor heterogeneity, non-
overlapping viewpoints, and low point cloud overlap make
alignment highly error-prone, yet these challenges are often
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bypassed or insufficiently addressed. Furthermore, prior stud-
ies rarely consider the critical impact of communication band-
width and information-sharing structures, which fundamentally
constrain how alignment can be realized in V2X systems.

To bridge this gap, this paper selects representative candi-
dates across different fusion stages that are potentially appli-
cable to V2X setups. The goal is to evaluate whether existing
registration methods can robustly achieve data alignment in
real V2X scenarios, and to analyze their failure cases and
bandwidth efficiency, thereby providing practical insights and
future directions for V2X data alignment research.

II. EXISTING V2X DATA ALIGNMENT APPROACHES

In V2X cooperative perception, data alignment can be cate-
gorized into early, intermediate, and late fusion depending on
the stage at which information is exchanged, as summarized
in Figure 1. This categorization serves not only as a taxonomy
but also as a framework to analyze the trade-off between
communication efficiency and alignment accuracy. In the
following subsections, we discuss the exchanged units and
representative approaches at each stage.

A. Early Fusion

Early fusion exchanges raw point clouds to estimate the
relative pose. The most basic approaches include classical
registration algorithms such as ICP [1] and TEASER++ [5],
which iteratively update correspondences between two point
clouds and compute a rigid transformation that minimizes the
sum of point-to-point or point-to-set distances. However, in
V2X setups, the limited overlap between vehicle and infras-
tructure viewpoints makes these approaches highly sensitive to
initialization and prone to failure. Recent learning-based meth-
ods still rely on raw point clouds as input but aim to improve
robustness by learning correspondences and their confidence.
Buffer-X [2], GeoTransformer [6], and PARENet [7] belong
to this category. In particular, Buffer-X has shown relatively
stable registration performance in low-overlap conditions and
demonstrated zero-shot generalization to outdoor datasets.
Nevertheless, due to the direct use of raw point clouds,
the communication cost remains high, and its robustness in
extremely low-overlap V2X scenarios has not yet been fully
validated.
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Fig. 1. Data alignment approaches in V2X cooperative perception. Early fusion (point-level) exchanges raw point clouds, Intermediate fusion (feature-
level) exchanges learned feature representations, and Late fusion (object-level) exchanges object detections. Each approach exhibits distinct trade-offs between
communication efficiency and registration accuracy.

B. Intermediate Fusion

Intermediate fusion exchanges feature representations instead
of raw point clouds. This approach is designed to estab-
lish effective correspondences even under limited overlap.
Representative methods include EYOC [8], CAST [9], and
UGP [10]. However, feature descriptors that improve accuracy
are often larger or more complex than raw point clouds, which
conflicts with the strict communication constraints in V2X
environments. For this reason, we excluded intermediate fusion
from our experimental evaluation. Nonetheless, if lightweight
feature representations tailored to communication constraints
are developed, intermediate fusion could become a promising
direction in future research.

C. Late Fusion

Late fusion exchanges object-level information for data align-
ment. Representative examples include V2I-Calib [11] and
V2I-Calib++ [3], which match detected bounding boxes from
each agent and convert box corners into feature points for rela-
tive pose estimation. Since raw point clouds are not exchanged,
communication efficiency is extremely high, and this approach
integrates naturally with existing detection pipelines. However,
it is sensitive to detection errors such as missing objects,
false positives, and localization noise, and the asymmetric
viewpoints in V2X scenarios make object matching inherently
unstable. Therefore, while late fusion is the most practical
choice in terms of communication efficiency, its alignment
accuracy fundamentally depends on the performance of object
detectors.

D. Summary

Data alignment approaches can be categorized into early fusion
based on raw point clouds, intermediate fusion based on fea-
ture representations, and late fusion based on object-level in-
formation. Each approach exhibits a different trade-off between
communication efficiency and registration accuracy, and their
applicability to V2X scenarios varies. In this work, we focus
on three representative methods: the classical early fusion
approach ICP [1], the learning-based early fusion method
Buffer-X [2], and the object-level late fusion approach V2I-
Calib++ [3]. Intermediate fusion methods were excluded due
to their misalignment with communication efficiency require-
ments. The following sections evaluate these three approaches
under V2X conditions and empirically analyze their strengths
and limitations in real scenarios.

III. EXPERIMENT

A. Metrics

We adopt three standard metrics for point cloud registration:
• Relative Rotation Error (RRE)

RRE = arccos

(
Tr(𝑅𝑅⊤

gt𝑅𝑅est) − 1
2

)
,

where 𝑅𝑅gt and 𝑅𝑅est denote the ground-truth and estimated
rotation matrices.

• Relative Translation Error (RTE)

RTE = ∥𝑡𝑡gt − 𝑡𝑡est∥2,

where 𝑡𝑡gt and 𝑡𝑡est represent the ground-truth and estimated
translations.

• Success Rate (SR)
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We report two variants with thresholds 𝜏𝜏𝑡𝑡 = 2.0 m and
𝜏𝜏𝑟𝑟 = 5.0◦:

SR𝑡𝑡 =
1
𝑁𝑁

𝑁𝑁∑
𝑖𝑖=1

1[RTE𝑖𝑖 < 𝜏𝜏𝑡𝑡 ] ,

SR𝑡𝑡 ,𝑟𝑟 =
1
𝑁𝑁

𝑁𝑁∑
𝑖𝑖=1

1[RTE𝑖𝑖 < 𝜏𝜏𝑡𝑡 ∧ RRE𝑖𝑖 < 𝜏𝜏𝑟𝑟 ] ,

where 𝑁𝑁 is the total number of evaluated pairs and 1[·]
is the indicator function.

B. Dataset

Experiments are conducted on the DAIR-V2X dataset [4],
a large-scale vehicle–infrastructure dataset collected in real
traffic environments. It provides synchronized LiDAR and
camera data from both agents. Table I summarizes the LiDAR
specifications.

TABLE I
SPECIFICATIONS OF LIDAR SENSORS IN DAIR-V2X

Sensor Specification

Infrastructure LiDAR 300 beams, 10Hz, 100◦ horizontal FOV, −30◦–
10◦ vertical FOV, ≤ 280m range, ±3cm accuracy

Vehicle LiDAR 40 beams, 10Hz, 360◦ horizontal FOV, −30◦–
10◦ vertical FOV, ≤ 200m range, ±0.33◦ vertical
resolution

C. Evaluated Methods

We evaluate representative methods at both the point-level and
the object-level.

At the point level, ICP and Buffer-X are compared. ICP
iteratively minimizes point-to-point distances and is evalu-
ated with perturbations of ±5 m translation and ±5◦ rotation.
Buffer-X learns correspondences and confidence scores di-
rectly from raw point clouds. To analyze the trade-off between
accuracy and bandwidth, we reduce the transmitted points to
100%, 90%, 80%, and 70%.

At the object level, we assess V2I-Calib++, which exchanges
2D detection bounding boxes obtained from synchronized
images. For data alignment, each bounding box is converted
into a set of proxy points by projecting its geometric bound-
aries into the LiDAR space. In practice, the box corners
and boundary-aligned points serve as anchors for extrinsic
estimation. Since its performance depends heavily on detection
quality, we additionally simulate noisy and missing bounding
boxes to test robustness.

D. Implementation Details

All methods are evaluated using the official implementations
and pretrained weights released by the original authors. DAIR-
V2X point clouds are only reformatted into the required input
types (e.g., .bin) without additional preprocessing. ICP exper-
iments are performed on an Intel Xeon Gold 6548Y+ CPU,

Fig. 2. SR degradation with increasing initialization noise (translation,
rotation) for ICP.

while learning-based methods are evaluated on an NVIDIA
RTX A6000 GPU server.

IV. RESULTS

A. Quantitative Evaluation

Table II compares the three approaches (ICP, Buffer-X, and
V2I-Calib++) under different initialization, noise, and trans-
mission conditions. Metrics include RRE, RTE, SR𝑡𝑡 , SR𝑡𝑡 𝑡𝑡𝑡 ,
as well as runtime and communication bandwidth, enabling a
joint analysis of robustness and efficiency. We further provide
per-method discussions.

1) ICP-based Point-level Data Alignment
Table II (top block) reports the results for ICP. Even without
injected noise, SR𝑡𝑡 only reached 91.95%, not 100%. This is
mainly because some DAIR-V2X ground-truth poses contain
errors of several tens of centimeters to over 1 m, making it
impossible for ICP to satisfy the <2 m condition even when
initialized from GT. Moreover, the large disparity in LiDAR
configurations (40-beam 360° vs. 300-beam 100°) often leads
to very limited overlap, amplifying sensitivity to initialization.
As initialization noise increased, the success rate declined
rapidly (0 m, 0° → 5 m, 5°: SR𝑡𝑡 91.95% → 61.91%), clearly
demonstrating ICP’s fragility.

2) Buffer-X Learning-based Data Alignment
Table II (middle block) shows the results for Buffer-X. Al-
though Buffer-X is recognized for strong zero-shot perfor-
mance on standard benchmarks, in V2X its SR𝑡𝑡 dropped
to 63.72% even with full point transmission. This suggests
that robustness does not directly transfer under V2X-specific
challenges such as low overlap and cross-sensor domain gaps.

Compared to ICP, Buffer-X is less dependent on initializa-
tion, maintaining moderate success rates even without coarse
pose priors. However, absolute SR remains within the 50–60%
range, limiting its reliability for cooperative perception.

As shown in Figure 3, reducing the transmitted point
ratio further decreased SR (100%→70%: 63.72%→55.38%).
This illustrates the accuracy–bandwidth trade-off, but the low
absolute SR undermines its practical utility.
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TABLE II
COMPARISON OF METHODS UNDER V2X CALIBRATION SETTINGS. SR𝑡𝑡 : RTE< 2 M, SR𝑡𝑡𝑡𝑡𝑡 : RTE< 2 M & RRE< 5◦ .

Init Method Setup RRE
(◦) ↓

RTE
(m) ↓

SR𝑡𝑡

(%) ↑
SR𝑡𝑡𝑡𝑡𝑡

(%) ↑
Time

(s)
Bandwidth

(Mbps @10 Hz)

✓

ICP [1] Noise: 0 m, 0◦ 1.1788 1.0437 91.95 91.95 5.2463 128.00
ICP Noise: 1 m, 1◦ 1.1795 1.0438 91.73 91.73 5.2731 128.00
ICP Noise: 2 m, 2◦ 1.1706 1.0459 90.33 90.27 5.4747 128.00
ICP Noise: 3 m, 3◦ 1.2720 1.0466 83.50 82.16 5.6728 128.00
ICP Noise: 4 m, 4◦ 1.3091 1.0192 73.91 72.41 5.8565 128.00
ICP Noise: 5 m, 5◦ 1.3679 1.0340 61.91 60.29 6.0176 128.00

×
Buffer-X [2] PCD 100% 1.1911 1.1986 63.72 63.49 3.0660 128.00
Buffer-X PCD 90% 1.1796 1.2037 61.43 61.05 2.8853 115.20
Buffer-X PCD 80% 1.2059 1.2125 58.72 58.20 3.0456 102.40
Buffer-X PCD 70% 1.2199 1.2255 55.38 54.46 2.4882 89.60

×

V2I-Calib++ [3] All GT boxes 1.2177 0.9831 62.34 62.28 0.3200 12.88
V2I-Calib++ Box drop 10% 1.2650 1.0024 57.16 56.99 0.8082 11.59
V2I-Calib++ Box drop 20% 1.3041 1.0510 51.64 51.36 0.5017 10.31
V2I-Calib++ Box drop 30% 1.3408 1.0767 42.45 42.28 0.3001 9.02
V2I-Calib++ Noise: 0.1 m, 1◦ 1.5660 1.1029 47.19 46.57 1.1639 12.88
V2I-Calib++ Noise: 0.2 m, 2◦ 2.1255 1.2455 30.64 29.36 0.7805 12.88

Note. ICP was evaluated on CPU only.

Fig. 3. Performance of Buffer-X under varying transmitted point cloud ratios.
SR remains at an absolutely low level and decreases progressively as the
transmission ratio is reduced.

3) V2I-Calib++ Object-level Data Alignment

Table II (bottom block) reports results for V2I-Calib++. In the
baseline setting (all GT boxes), SR𝑡𝑡=62.34%, comparable to
Buffer-X, while requiring only 12.88 Mbps—over 10× more
efficient. Moreover, when successful, V2I-Calib++ achieved
higher-quality alignment (RTE=0.98 m, RRE=1.22◦).

However, robustness issues are evident. As shown in Fig-
ure 4, SR degraded significantly under box drop and noise.
With 30% missing boxes, SR fell to 42.45%, and with 0.2
m translation and 2◦ rotation noise, SR collapsed to ∼30%.
This highlights strong sensitivity to both detection recall and
localization noise, clarifying why late fusion has become less
favored in recent literature.

Thus, V2I-Calib++ offers excellent bandwidth efficiency
and precise alignment when successful, but its reliance on
detection quality is a critical limitation. Enhancing robustness

Fig. 4. V2I-Calib++ sensitivity to box drop and added noise. SR declines
sharply under missing or noisy detections.

against missing and noisy detections is more crucial than
merely improving bounding box localization accuracy.

4) Additional Analysis on RRE and RTE
Across successful cases, RRE and RTE remained stable. ICP
and Buffer-X both maintained RTE ≈ 1.0–1.2 m and RRE ≈
1.2◦, while V2I-Calib++ achieved the lowest RTE (0.98 m)
in its baseline configuration. This indicates higher alignment
precision upon success, but performance degraded drastically
once detection errors were introduced.

B. Qualitative Evaluation

Figure 5 provides a side-by-side qualitative comparison across
three representative scenes, each row corresponding to a dif-
ferent scenario. Columns show the GT reference, ICP, Buffer-
X, and V2I-Calib++ outputs, respectively. These examples
illustrate typical success and failure cases that complement
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GT ICP Buffer-X V2I-Calib++

Fig. 5. Qualitative comparison across three representative scenes (rows) and four methods (columns). Columns: (A) GT, (B) ICP, (C) Buffer-X, (D) V2I-
Calib++. Rows: (a) all good with slight GT jitter, (b) low overlap where V2I-Calib++ succeeds while ICP/Buffer-X fail, (c) high overlap where V2I-Calib++
fails due to the scarcity of common dynamic objects, resulting in insufficient correspondences despite abundant geometric overlap. Major/minor grids help
visual assessment of residual misalignment.

the quantitative analysis.

1) ICP-based Point-level Data Alignment
ICP is highly sensitive to both ground-truth jitter and ge-
ometric overlap. In Row (a), where the GT itself contains
small pose errors, ICP sometimes produces alignments that
appear even better than GT, reflecting that DAIR-V2X “GT”
is a refined estimate rather than an absolute reference. In
Row (b), ICP collapses into local minima due to insufficient
overlap, consistent with the sharp SR degradation observed in
Table II. When overlap is sufficient (Row (c)), ICP achieves
almost perfect registration, visually indistinguishable from GT.
These observations visually support the sensitivity and SR
degradation trends reported in the quantitative section.

2) Buffer-X Learning-based Data Alignment
Buffer-X maintains moderate robustness even without explicit
initialization. As seen in Figure 5, when overlap is adequate, its
alignment quality is comparable to GT and ICP (Rows (a) and

(c)). However, in ambiguous or low-overlap scenarios (Row
(b)), Buffer-X often diverges catastrophically, producing large
offsets rather than gradual drift. Thus, while less dependent
on initialization than ICP, Buffer-X tends to fail in a more
catastrophic manner under challenging V2X conditions, which
raises concerns for safety-critical use.

3) V2I-Calib++ Object-level Data Alignment
V2I-Calib++ leverages object correspondences, allowing it to
succeed in cases where point-based methods fail. For example,
as illustrated in Figure 5 Row (b), it successfully aligns
scenes with very limited geometric overlap, where ICP and
Buffer-X collapse. However, as shown in Row (c), it fails
even under abundant geometric overlap, since only a few
dynamic objects are jointly observed, leaving the solver with
insufficient correspondences. Figure 6 provides a close-up of
this Row (c) failure, including the detected bounding boxes:
the infrastructure-side LiDAR (left) and vehicle-side LiDAR
(right) share very few commonly visible dynamic objects,
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Fig. 6. Close-up analysis of the Row (c) failure in Figure 5, including the
detected bounding boxes. Left: infrastructure-side LiDAR; Right: vehicle-side
LiDAR. Despite large geometric overlap, the two views share only a few
commonly observed dynamic objects, resulting in insufficient correspondences
and causing V2I-Calib++ to misalign.

making object-level matching underconstrained. By contrast,
point-level methods can still exploit rich static geometry (e.g.,
façades, road edges), explaining why they succeed in the same
case. Together, these observations underscore the fragility of
V2I-Calib++ to detection sparsity.

4) Discussion
Taken together, the qualitative analysis highlights comple-
mentary properties: (i) ICP achieves excellent accuracy when
overlap is sufficient but collapses otherwise. (ii) Buffer-X
generalizes better without initialization but fails catastrophi-
cally under difficult conditions. (iii) V2I-Calib++ can succeed
even under low overlap but is brittle in sparse-object or
noisy-detection scenarios. These case studies visually explain
the quantitative trends and suggest that practical V2X data
alignment requires balancing geometric overlap, initialization
priors, and detector robustness.

V. CONCLUSION

This work presented a comprehensive evaluation of represen-
tative calibration approaches for V2X cooperative perception
using the DAIR-V2X dataset. By analyzing early fusion (ICP),
learning-based point-level registration (Buffer-X), and late
fusion (V2I-Calib++), we identified the unique strengths and
limitations that arise in realistic V2X settings.

The experiments show that traditional registration tech-
niques, though effective in conventional robotics, are not
directly transferable to V2X environments due to challenges
such as low overlap, sensor asymmetry, and dependency
on detection quality. ICP achieves accurate alignment only
under favorable initialization and overlap, Buffer-X alleviates
initialization dependence but remains limited in robustness,
and V2I-Calib++ offers superior bandwidth efficiency but is
fragile against noisy or missing detections. These findings
highlight that no existing approach alone can fully address
the requirements of reliable cooperative perception.

Looking ahead, future research should focus on (i) reduc-
ing detection dropouts, (ii) ensuring robustness to noise and

imperfect ground-truth references, and (iii) bridging domain
gaps between heterogeneous sensors. In particular, feature-
level alignment (intermediate fusion), which has recently
gained attention, offers a promising direction to mitigate the
weaknesses of point-level and object-level methods. Advancing
this paradigm will be essential to achieving robust and scalable
V2X cooperative perception.
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