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Abstract—In high-frequency wireless systems, reliable classi-
fication of multipath components (MPCs) remains challenging
due to environment-dependent propagation. This paper intro-
duces a real-time two-stage clustering method that couples a
constraint-based preprocessing step with probabilistic clustering
on a reduced feature set. The first stage suppresses noise and
prunes features derived from delay, angle, and power-domain
observations, yielding compact representations. The second stage
conducts lightweight probabilistic assignment that accommodates
residual uncertainty without strong prior assumptions. Experi-
mental validation on measurement data indicates that the method
further improves stability and suggests that real-time MPC
classification can be achieved without sacrificing fidelity.

Index Terms—Millimeter-wave (mmWave), multipath compo-
nent, real-time clustering, feature reduction

I. INTRODUCTION

In high-frequency wireless systems, exploiting propagation

characteristic such as the strong directionality of millimeter-

wave (mmWave) and terahertz bands, is a key enabler of future

networks [1]–[3]. However, received signal typically comprise

a line-of-sight (LoS) and multiple reflections, collectively

referred to as multipath components (MPCs). Furthermore,

MPCs vary with the receiver (RX) location and the surround-

ing environment. To address these challenges, both clustering

and non-clustering technique have been used to classify MPCs.

Non-clustering approaches, such as the tapped-delay-line

channel model, are well established. They represent channels

as multiple taps with distinct delays, optionally augmented

with angular information, and have been adopted in 3GPP

channel models [2], [4], [5]. However, these approaches re-

quire extensive measurement campaigns to validate model

fit and often need re-parameterization to reduce error in

applications such as robotics communications and integrated

sensing and communications [6]–[8].

By contrast, clustering technique such as K-means and

DBSCAN operate on feature representations derived from the

received signal [9]–[11]. Common strategies include distance-

based partitioning that minimizes the Euclidean distance to

reference centroids subject to hyperparameter constraints, and

probabilistic modeling that fits clusters via iterative inference.

However, computational cost increases with feature dimen-

sionality, and model-based clustering may fail when initial-

ization or prior assumptions are inaccurate.
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Fig. 1. The experiment layout for 28 GHz indoor measurements.

Prior studies typically select technique by prioritizing com-

putational efficiency or accuracy for tasks such as chan-

nel modeling, indoor measurements, or machine learning

pipelines. In particular, measurement-driven experiments often

validate performance via offline data collection and post-

processing, without considering real-time constraints. This

paper proposes a MPC-classification method that combines

low computational cost with high accuracy and provides ex-

perimental validation. The method adopts a two-stage pipeline

for real-time operation: a constraint-based preprocessing step

that suppresses noise and reduces the feature set, followed by

a probabilistic approach operating on the reduced features.

Notations: The operators (·)∗, (·)⊤, (·)H, and | · | denote

the conjugate, transpose, conjugate transpose, and the absolute

value.

II. SYSTEM ARCHITECTURE

A. Testbed Overview

The testbed is composed of two chassis from National

Instruments (NI) and two radio frequency (RF) devices from

TMYTEK [12]–[15]. The chassis for a transmitter (TX) and

a RX are comprised of NI units such as a FPGA module,

a timing module to synchronize between the TX and RX,

and an embedded controller for aforementioned units. Note

that the FPGA module of the TX is connected to a digital-to-

analog converter (DAC), and the DAC is connected to a local
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Fig. 2. The schematic of measurement setup.

oscillator (LO) module, respectively. Here, a LO module of

the RX is connected to an analog-to-digital converter (ADC),

and the ADC is connected to the FPGA module of the RX,

respectively. Each RF device for the TX and RX is comprised

of a RF converter and an uniform planar array for analog

beamforming equipped with 16 antenna elements. Likewise,

each RF converter for the TX and RX performs up-converting

to 28GHz band and down-converting to 10.56GHz band,

respectively. The detailed system specification is described in

Table I.

B. Received Signal Model

This paper considers a multiple input multiple output

(MIMO) orthogonal frequency division multiplexing (OFDM)

system, where the TX and RX are equipped with NT and NR

elements of uniform planar array (UPA), respectively. Note

that NT = Nv
T ×Nh

T and NR = Nv
R ×Nh

R denote the number of

antenna elements on the horizontal and the vertical side. The

antenna element spacing of the UPA is the half-wavelength

λc/2, where λc is derived from c = fcλc, and c is the speed

of light.

The received signal for the p-th TX beam at the q-th RX

beam can be expressed as

yp,q(µ, ν) = w
H

R,qH(µ, ν)f∗T,px
p,q(µ, ν) + np,q(µ, ν) (1)

where xp,q(µ, ν) and yp,q(µ, ν) denote the transmitted data

and the received data at the µ-th symbol of the ν-th subcarrier,

respectively. np,q(µ, ν) denotes the additive Gaussian noise.

Moreover, fT,p ∈ C
NT×1 and wR,q ∈ C

NR×1 denote the p-th

TX precoder and the q-th RX combiner.

TABLE I. TESTBED HARDWARE SPECIFICATION

Parameters Value

Center frequency 28GHz

Bandwidth 3.072GHz

Subcarrier spacing (∆f ) 480 kHz (# of subcarrier: 6400)

Antenna size TX: 16 (4 × 4); RX: 16 (4 × 4)

TX beam AoD range −45◦ to 45◦ with 6◦ interval

RX beam AoA range −45◦ to 45◦ with 2◦ interval

CP duration (TCP) 0.417 µs

Size of integration 9

Fig. 3. The power histogram of 28GHz MIMO OFDM testbed in the indoor
measurement. The power measurement results less than −30dB represent
the mixture of sidelobe components, noise components, and the multi-bounce
paths.

Note that the channel matrix H(µ, ν) ∈ C
NR×NT under Np

propagation paths can be expressed as

H(µ, ν) =

Np
∑

n=1

αn(µ, ν)e
j2π(µfD

ν
TTot−τnν∆f) (2)

× aR(ΦR,n)aT(ΦT,n)
⊤,

where αn(µ, ν) denotes the complex attenuation. fD
ν and

TTot = Tsym + TCP are the Doppler frequency and the total

symbol duration, where Tsym and TCP denote the OFDM base

symbol duration and the cyclic prefix duration, respectively.

Here, aT ∈ C
NT×1 and aR ∈ C

NR×1 denote the TX steering

vector and the RX steering vector, with the angle-of-departure

(AoD) ΦT,n = [φT,n, θT,n]
⊤ at the TX and the angle-of-arrival

(AoA) ΦR,n = [φR,n, θR,n]
⊤ at the RX, where φ and θ are

the azimuth and the elevation, respectively. Moreover, τn and

∆f denote the propagation delay of the n-th path and the

subcarrier spacing.

III. CLUSTERING TECHNIQUE

A. Feature Construction for Clustering

Sequential beam sweeps are employed: for each transmit

beam p ∈ 1, . . . , P , all receive beams q ∈ 1, . . . , Q are

scanned in order (TX p = 1 → RX q = 1, . . . , Q; then TX

p = 2 → RX q = 1, . . . , Q; etc.).

Let t index a sweep instance after coherent time integration

over a fixed window. For each (t, p), samples yt,p,q(µ, ν) are

collected over q, µ, and ν. Let P̂ t,p,q denote the aggregated

power for TX/RX beam pair (p, q) at sweep t, obtained

from yt,p,q(µ, ν) across (µ, ν), P̂ t,p,q =
∑

(µ,ν) |y
t,p,q(µ, ν)|2.

Clustering operates on log-power RX-sweep vectors used as

features, z, as a feature for clustering, and it can be represented

as

zt,p =
[

log P̂ t,p,1, . . . , log P̂ t,p,Q
]⊤

∈ R
Q. (3)

Equivalently, for each t the raw I/Q data can be organized as

a tensor Y(t) ∈ C
P×Q×Nµ×Nν with axes p, q, µ, and ν.
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To enable real-time operation, feature size is reduced via

power-thresholding based on the empirical distribution of mea-

sured powers, suppressing sidelobes and low-power multiple-

bounce paths. In particular, MPCs are difficult to distinguish

from noise components arising from heavily attenuated multi-

reflection paths and sidelobes. The thresholding step removes

such components and improves computational efficiency.

B. Gaussian Mixture Model

Measurement samples collected from experimentation are

assumed to follow Gaussian mixture model (GMM). Let

s ∈ R
d denote the feature vector derived from the log-power

RX sweep after preprocessing, s ≡ z̃t,p with d = Q. A

K-component GMM assumes that s is drawn from a finite

mixture of Gaussian densities:

p(s | Θ) =

K
∑

k=1

πk N (s | µk,Σk) , (4)

where Θ = {πk, µk,Σk}Kk=1, πk ≥ 0, and
∑K

k=1 πk = 1.

Here, µk ∈ R
d and Σk ∈ R

d×d denote the mean and covari-

ance of the k-th component. Given the dataset S = {sn}
N
n=1,

maximum-likelihood (ML) estimation seeks

Θ̂ ∈ argmax
Θ

L(Θ), (5)

L(Θ) =
N
∑

n=1

log

(

K
∑

k=1

πk N (sn | µk,Σk)

)

.

Direct maximization is intractable due to the log-sum structure.

The expectation–maximization (EM) algorithm addresses this

by introducing a latent component indicator cn ∈{1, . . . ,K}
and iterating:

a) E-step:

γnk � P (cn=k | sn,Θ) =
πk N (sn | µk,Σk)

∑K
j=1 πj N (sn | µj ,Σj)

.

b) M-step:

Nk =

N
∑

n=1

γnk, µnew
k =

1

Nk

N
∑

n=1

γnk sn,

Sk =
1

Nk

N
∑

n=1

γnk (sn − µnew
k )(sn − µnew

k )⊤,

λk = ǫ ·
tr(Sk)

d
,

Σnew
k = Sk + λkI, πnew

k =
Nk

N
,

where ǫ is a regularization numerical number to keep the

stability for data clustering, ǫ ∈ [10−3, 10−2]. For real-time

operation, Σk may be constrained to be diagonal (or shared

across k), which reduces per-iteration complexity to O(NKd).

Fig. 4. The result of the proposed clustering technique from single round.
Each blue point(•) represents the residual sidelobe components.

IV. EXPERIMENTATION AND RESULTS

A. Experimentation Layout

Experiments are conducted on the MIMO OFDM testbed

in the indoor environment. The TX and RX are placed 6.3m
apart and oriented approximately 40◦ off the LoS axis. As

shown in Fig. 2, two objects are placed in the scene: object #2

placed at position (−3.3, 13.7) [m] and object #1 placed at

distinct 9 positions across rounds. Each round comprises 15
full beam sweeps, at 50Hz (50 Sweeps per second). Both the

TX and RX sweep from −45◦ to 45◦ with sequential sweeps:

for each TX beam p ∈ 1:P , the RX sweeps q ∈ 1:Q in order,

as mentioned in Section III. The number of TX and RX beams

are P = 16 and Q = 46, with angular resolutions of 6◦ and

2◦, respectively. The total of TX-RX beam pairs is 736.

B. Results and Analysis

Fig. 3 shows the power histogram derived from indoor

measurements. Bins above −30 dB reflect a mixture of the

LoS path, reflections from Object 1, Object 2, and residual

sidelobe components. Together, these components account for

99.8% of samples above −30 dB.

Fig. 4 presents clustering results from a representative

round; a single-sweep result is also depicted. As illustrated in

Fig. 1, numerous spurious reflection points can be appeared

near the TX and RX due to factors such as the fabric floor,

lattice-pattern ceiling, furniture, and pillars. These factors

induce strong sidelobe components, shown as blue and cyan

points in Fig. 4.

Fig. 5 aggregates results across all rounds; each point

represents the mean over sweeps within a round. Here, the

LoS path corresponds to the beam pair p = 4 and q = 44.

The proposed clustering technique identifies the LoS path and

MPCs while suppressing reflections from the floor, ceiling,

and pillars.
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Fig. 5. The data clusters of each sweep. The brown point(•), cyan point(•),
and blue point (•) represent the LoS path, and reflected paths from Object 1

and Object 2, respectively. Each point has a mean value of samples in the
cluster.

V. CONCLUSION

This paper presents a two-stage data clustering technique

with 28GHz indoor measurements via experimental valida-

tion. The proposed data clustering technique first processes

the indoor measurement to construct a feature set for data

clustering, and reduces the size of the feature set by power

thresholding. The experimentation is conducted in an indoor

environments where the LoS path component is sparse and

high diffuse reflection. The experiment result shows that

the proposed two-stage data clustering technique reduces the

computational complexity using preprocessed feature set, and

classifies the strong MPCs. Further extension is developing the

clustering technique to estimate channel parameter for sensing

capabilities such as target tracking and radio simultaneous

localization and mapping.
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