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Abstract—In high-frequency wireless systems, reliable classi-
fication of multipath components (MPCs) remains challenging
due to environment-dependent propagation. This paper intro-
duces a real-time two-stage clustering method that couples a
constraint-based preprocessing step with probabilistic clustering
on a reduced feature set. The first stage suppresses noise and
prunes features derived from delay, angle, and power-domain
observations, yielding compact representations. The second stage
conducts lightweight probabilistic assignment that accommodates
residual uncertainty without strong prior assumptions. Experi-
mental validation on measurement data indicates that the method
further improves stability and suggests that real-time MPC
classification can be achieved without sacrificing fidelity.

Index Terms—Millimeter-wave (mmWave), multipath compo-
nent, real-time clustering, feature reduction

I. INTRODUCTION

In high-frequency wireless systems, exploiting propagation
characteristic such as the strong directionality of millimeter-
wave (mmWave) and terahertz bands, is a key enabler of future
networks [1]-[3]. However, received signal typically comprise
a line-of-sight (LoS) and multiple reflections, collectively
referred to as multipath components (MPCs). Furthermore,
MPCs vary with the receiver (RX) location and the surround-
ing environment. To address these challenges, both clustering
and non-clustering technique have been used to classify MPCs.

Non-clustering approaches, such as the tapped-delay-line
channel model, are well established. They represent channels
as multiple taps with distinct delays, optionally augmented
with angular information, and have been adopted in 3GPP
channel models [2], [4], [5]. However, these approaches re-
quire extensive measurement campaigns to validate model
fit and often need re-parameterization to reduce error in
applications such as robotics communications and integrated
sensing and communications [6]—[8].

By contrast, clustering technique such as K-means and
DBSCAN operate on feature representations derived from the
received signal [9]-[11]. Common strategies include distance-
based partitioning that minimizes the Euclidean distance to
reference centroids subject to hyperparameter constraints, and
probabilistic modeling that fits clusters via iterative inference.
However, computational cost increases with feature dimen-
sionality, and model-based clustering may fail when initial-
ization or prior assumptions are inaccurate.
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Fig. 1. The experiment layout for 28 GHz indoor measurements.

Prior studies typically select technique by prioritizing com-
putational efficiency or accuracy for tasks such as chan-
nel modeling, indoor measurements, or machine learning
pipelines. In particular, measurement-driven experiments often
validate performance via offline data collection and post-
processing, without considering real-time constraints. This
paper proposes a MPC-classification method that combines
low computational cost with high accuracy and provides ex-
perimental validation. The method adopts a two-stage pipeline
for real-time operation: a constraint-based preprocessing step
that suppresses noise and reduces the feature set, followed by
a probabilistic approach operating on the reduced features.

Notations: The operators (-)*, (-)7, (), and | - | denote
the conjugate, transpose, conjugate transpose, and the absolute
value.

II. SYSTEM ARCHITECTURE
A. Testbed Overview

The testbed is composed of two chassis from National
Instruments (NI) and two radio frequency (RF) devices from
TMYTEK [12]-[15]. The chassis for a transmitter (TX) and
a RX are comprised of NI units such as a FPGA module,
a timing module to synchronize between the TX and RX,
and an embedded controller for aforementioned units. Note
that the FPGA module of the TX is connected to a digital-to-
analog converter (DAC), and the DAC is connected to a local
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Fig. 2. The schematic of measurement setup.

oscillator (LO) module, respectively. Here, a LO module of
the RX is connected to an analog-to-digital converter (ADC),
and the ADC is connected to the FPGA module of the RX,
respectively. Each RF device for the TX and RX is comprised
of a RF converter and an uniform planar array for analog
beamforming equipped with 16 antenna elements. Likewise,
each RF converter for the TX and RX performs up-converting
to 28 GHz band and down-converting to 10.56 GHz band,
respectively. The detailed system specification is described in
Table 1.

B. Received Signal Model

This paper considers a multiple input multiple output
(MIMO) orthogonal frequency division multiplexing (OFDM)
system, where the TX and RX are equipped with Nt and Ng
elements of uniform planar array (UPA), respectively. Note
that Ny = N¥ x NJ and Ngx = N§ x N} denote the number of
antenna elements on the horizontal and the vertical side. The
antenna element spacing of the UPA is the half-wavelength
Ac/2, where A, is derived from ¢ = f.)\., and c is the speed
of light.

The received signal for the p-th TX beam at the ¢g-th RX
beam can be expressed as

yP 4 (p,v) = wi H(w,v)Ef 2P (p,v) + nP9(p,v) (1)

where xP9(u,v) and yP?(u,v) denote the transmitted data
and the received data at the p-th symbol of the v-th subcarrier,
respectively. n?%(u,v) denotes the additive Gaussian noise.
Moreover, fr, € CN¥7*! and wg , € CNe*! denote the p-th
TX precoder and the g-th RX combiner.

TABLE I. TESTBED HARDWARE SPECIFICATION
Parameters Value
Center frequency 28 GHz
Bandwidth 3.072 GHz

480 kHz (# of subcarrier: 6400)
TX: 16 (4 x 4); RX: 16 (4 x 4)
—45° to 45° with 6° interval
RX beam AoA range —45° to 45° with 2° interval
CP duration (7¢p) 0.417 ps

Size of integration 9

Subcarrier spacing (A f)

Antenna size
TX beam AoD range
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Fig. 3. The power histogram of 28 GHz MIMO OFDM testbed in the indoor
measurement. The power measurement results less than —30dB represent
the mixture of sidelobe components, noise components, and the multi-bounce
paths.

Note that the channel matrix H(u,v) € CM*t under N,
propagation paths can be expressed as

Np
H('u,, V) = Z()tn(,u,7 V)ejzﬂ-(:“‘fBTTm*Tnl/Af) ?)
n=1

x ar(®rn)ar(®rn) ',

where v, (j1,v) denotes the complex attenuation. f2 and
Trot = Tsym + Tcp are the Doppler frequency and the total
symbol duration, where Ty, and Tcp denote the OFDM base
symbol duration and the cyclic prefix duration, respectively.
Here, ap € CV™*1 and ag € CV**! denote the TX steering
vector and the RX steering vector, with the angle-of-departure
(AoD) @1, = [¢1,n, 6r.n) " at the TX and the angle-of-arrival
(A0A) ®r,, = [Pr.n,0kr.n] at the RX, where ¢ and 0 are
the azimuth and the elevation, respectively. Moreover, 7,, and
Af denote the propagation delay of the n-th path and the
subcarrier spacing.

III. CLUSTERING TECHNIQUE
A. Feature Construction for Clustering

Sequential beam sweeps are employed: for each transmit
beam p € 1,...,P, all receive beams ¢ € 1,...,Q are
scanned in order (TX p=1— RX ¢ =1,...,Q; then TX
p=2—=>RXqg=1,...,Q; etc.).

Let ¢ index a sweep instance after coherent time integration
over a fixed window. For each (¢, p), samples y*?9(u, v) are
collected over ¢, p, and v. Let PtP:4 denote the aggregated
power for TX/RX beam pair (p,q) at sweep t, obtained
from y"7%(yu, v) across (y, v), PtP4 = D) [P ()2
Clustering operates on log-power RX-sweep vectors used as
features, z, as a feature for clustering, and it can be represented
as

Zyp = [log Ptrl log Pt’p’Q]T e R@, 3)

Equivalently, for each ¢ the raw I/Q data can be organized as
a tensor V() € CP*@XNuxNv with axes p, ¢, u, and v.
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To enable real-time operation, feature size is reduced via
power-thresholding based on the empirical distribution of mea-
sured powers, suppressing sidelobes and low-power multiple-
bounce paths. In particular, MPCs are difficult to distinguish
from noise components arising from heavily attenuated multi-
reflection paths and sidelobes. The thresholding step removes
such components and improves computational efficiency.

B. Gaussian Mixture Model

Measurement samples collected from experimentation are
assumed to follow Gaussian mixture model (GMM). Let
s € R? denote the feature vector derived from the log-power
RX sweep after preprocessing, s = Z;, with d = Q. A
K-component GMM assumes that s is drawn from a finite
mixture of Gaussian densities:

K
p(s|©) =D muN(s | i, St) )

k=1

where © = {mg, g, Sg ey, T > 0, and Zszl e = 1.
Here, p1, € R% and ), € R?*? denote the mean and covari-
ance of the k-th component. Given the dataset S = {s,,}2_,,
maximum-likelihood (ML) estimation seeks

Oc arg max L(0), 3)

N K
L(O) = Zlog <Z T N (sn | uk,Ek)> )
n=1 k=1

Direct maximization is intractable due to the log-sum structure.
The expectation—maximization (EM) algorithm addresses this
by introducing a latent component indicator ¢, € {1,..., K}
and iterating:

a) E-step:

N(sn | i, S

Zj:l Ty N (s | Mj’zj).

b) M-step:
N 1N
N = Z Ynk> wp = N, Z Ynk Sns
n=1 k n=1
1
Sk = Ny Z Yok (8 — i) (S — Ugew)Tv
n=1
tr(.S,
)\k = €- r(dk)a
N,
S =Skt Ml m =

where € is a regularization numerical number to keep the
stability for data clustering, ¢ € [1073,1072]. For real-time
operation, Y, may be constrained to be diagonal (or shared
across k), which reduces per-iteration complexity to O(N K d).
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Fig. 4. The result of the proposed clustering technique from single round.
Each blue point(®) represents the residual sidelobe components.

IV. EXPERIMENTATION AND RESULTS

A. Experimentation Layout

Experiments are conducted on the MIMO OFDM testbed
in the indoor environment. The TX and RX are placed 6.3 m
apart and oriented approximately 40° off the LoS axis. As
shown in Fig. 2, two objects are placed in the scene: object #2
placed at position (—3.3, 13.7) [m] and object #1 placed at
distinct 9 positions across rounds. Each round comprises 15
full beam sweeps, at 50 Hz (50 Sweeps per second). Both the
TX and RX sweep from —45° to 45° with sequential sweeps:
for each TX beam p € 1: P, the RX sweeps ¢ € 1:QQ in order,
as mentioned in Section III. The number of TX and RX beams
are P = 16 and @ = 46, with angular resolutions of 6° and
2°, respectively. The total of TX-RX beam pairs is 736.

B. Results and Analysis

Fig. 3 shows the power histogram derived from indoor
measurements. Bins above —30dB reflect a mixture of the
LoS path, reflections from Object 1, Object 2, and residual
sidelobe components. Together, these components account for
99.8 % of samples above —30 dB.

Fig. 4 presents clustering results from a representative
round; a single-sweep result is also depicted. As illustrated in
Fig. 1, numerous spurious reflection points can be appeared
near the TX and RX due to factors such as the fabric floor,
lattice-pattern ceiling, furniture, and pillars. These factors
induce strong sidelobe components, shown as blue and cyan
points in Fig. 4.

Fig. 5 aggregates results across all rounds; each point
represents the mean over sweeps within a round. Here, the
LoS path corresponds to the beam pair p = 4 and ¢ = 44.
The proposed clustering technique identifies the LoS path and
MPCs while suppressing reflections from the floor, ceiling,
and pillars.
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Fig. 5. The data clusters of each sweep. The brown point(®), cyan point(*),
and blue point (*) represent the LoS path, and reflected paths from Object 1
and Object 2, respectively. Each point has a mean value of samples in the
cluster.

V. CONCLUSION

This paper presents a two-stage data clustering technique
with 28 GHz indoor measurements via experimental valida-
tion. The proposed data clustering technique first processes
the indoor measurement to construct a feature set for data
clustering, and reduces the size of the feature set by power
thresholding. The experimentation is conducted in an indoor
environments where the LoS path component is sparse and
high diffuse reflection. The experiment result shows that
the proposed two-stage data clustering technique reduces the
computational complexity using preprocessed feature set, and
classifies the strong MPCs. Further extension is developing the
clustering technique to estimate channel parameter for sensing
capabilities such as target tracking and radio simultaneous
localization and mapping.
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