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Abstract—Real-world deployment of perception models re-
quires generalization beyond the environments encountered dur-
ing training. However, collecting and annotating data that cover
all possible conditions is infeasible. Consequently, models often
suffer from performance degradation when applied to new do-
mains, due to factors such as differences in beam configurations,
sensor noise, and environmental conditions. Addressing these
cross-dataset domain shifts is therefore essential for ensuring
robustness and generalization. In this work, we evaluate percep-
tion model across domains and study strategies that help alleviate
performance degradation.

Index Terms—LiDAR Semantic Segmentation, Autonomous
Driving, Domain Adaptation, Point Clouds, Deep Learning

I. INTRODUCTION

In autonomous driving, perception models are crucial for
understanding and interacting with the environment. Recent
progress in deep learning has advanced 3D perception tasks
including detection, segmentation, and scene understanding.
While these models achieve strong results on benchmarks
with training-like sensor setups and environments, their per-
formance often degrades sharply in real-world scenarios with
different sensors or environments.

One of the key challenges in real-world deployment is
domain shift, which refers to the discrepancy between the dis-
tribution of training data and that of the deployment environ-
ment. In the context of LiDAR-based perception, such domain
shifts commonly arise from differences in beam configurations
across sensors, variations in sensor noise characteristics, and
environmental factors such as weather, lighting, or scene
structure. As collecting and annotating data that covers all
possible conditions is infeasible, models are inevitably forced
to operate outside their learned distribution, which frequently
leads to severe drops in accuracy and reliability.

Addressing these cross-dataset performance gaps is crucial
for building robust and generalizable perception systems. A
large body of work has explored methods for unsupervised
domain adaptation (UDA), self-training, feature alignment, and
data augmentation strategies to mitigate these issues. While
many of these approaches report promising results, their effec-
tiveness often varies depending on the specific characteristics
of the source and target domains. This variability highlights
the need for systematic evaluation across diverse settings.
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Fig. 1: Examples from different driving datasets: A2D2 with
16-channel LiDAR (top) and SemanticKITTI with 64-channel
LiDAR (bottom)

In this work, we focus on evaluating the perception model
across diverse domains and highlight the challenges that arise
when models are deployed in unseen environments. A key
issue in this setting is the significant performance degradation
caused by variations in sensor configurations, beam patterns,
environmental conditions, and data distributions. Our goal is
to systematically assess how existing adaptation strategies per-
form under such shifts, identifying their ability in narrowing
the performance gap. We present experimental results across
the domain pair and emulate these sensor characteristics during
training and evaluate their impact on model performance.

II. TAsK: LIDAR SEMANTIC SEGMENTATION (LSS)

Recent advances in LSS can be categorized into point-
based, voxel-based, and projection-based approaches. Early
works such as [1], [2] introduced point-based processing
with permutation-invariant architectures, followed by [3], [4],
which improved local context modeling using convolutional
kernels and attention mechanisms. However, their limited
ability to capture local geometric context and the high compu-
tational cost on large-scale scenes restricted scalability. Voxel-
based methods address this by discretizing 3D space into grids
and applying sparse convolutions. [5] showed the effective-
ness of sparse CNNs, while [6], [7] improved efficiency and
accuracy with cylindrical voxelization and point-voxel hybrids.
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Fig. 2: Comparison of (a) an original SemanticKITTI LiDAR
scan with 64 beams; (b—c) scans produced by row-subsampling
the range image by uniformly dropping rows with probabilities
0.5 and 0.25, respectively; and (d) a A2D2 LiDAR scan
with 16 beams. Row-subsampling effectively simulates scans
captured with fewer laser beams.

In parallel, projection-based methods transform point clouds
into structured 2D representations, such as range images or
BEV maps, enabling the use of mature 2D CNN architectures.
Notable works [8]-[10] achieve fast inference but suffer from
information loss due to occlusions and discretization. More
recently, hybrid strategies combining different paradigms have
been proposed to balance efficiency, and scalability in LSS.
Representative works include PMF [11] and its efficient ex-
tension EPMF [12], which integrate camera-perspective RGB
features with point-level LiDAR representations via perspec-
tive projection to achieve improved robustness across varying
LiDAR configurations.

III. APPROACH: SENSOR-LEVEL SUBSAMPLING

To address the discrepancy introduced by heterogeneous
LiDAR sensors, we apply a ray subsampling strategy that
adjusts the number of beams to match the angular resolution
of the target domain. This simple preprocessing step reduces
the distribution shift and stabilizes the subsequent adaptation
process. As shown in Figure 2, the subsampling of the rows
from the source frame produces scans that resemble those
of the sensors with the target frame, for example when
transferring from a 64-beam HDL-64E to a 16-beam VLP-16.

Beyond aligning sensor characteristics, this strategy directly
mitigates the mismatch in angular resolution that often leads
to feature sparsity and degraded predictions when models
are applied to unseen sensors. Moreover, by adjusting the
subsampling patterns during training, the model is exposed
to a broader range of beam configurations, which acts as
a lightweight data augmentation and improves robustness.
Similar strategies, such as beam dropout and structured sub-
sampling, have also been explored in prior UDA studies,

further supporting the effectiveness of sensor-level adaptation
in bridging cross-sensor domain gaps.

TABLE I: Performance Gap Across Domains.

mloU (%)

Source / Target | SemanticKITTI (64-ch) | A2D2 (16-ch)

SemanticKITTI | 74.95 | 16.27
A2D2 | 22.16 | 35.50

Notes. KITTI denotes SemanticKITTI; A2D2 denotes Audi A2D2.
“Source” = no adaptation.

IV. EXPERIMENTS

A. Datasets

We focus on [13] and [14], which differ in LiDAR con-
figurations. This difference makes them suitable for studying
domain shift and adaptation.

SemanticKITTI [13] is a large-scale benchmark for 3D
semantic segmentation, derived from the KITTI odometry
sequences. It provides point-wise labels for over 4.5 billion
points across 22 outdoor driving sequences captured with a
Velodyne HDL-64E (64-channel) LiDAR, making it a standard
dataset for evaluating LiDAR-based segmentation models in
autonomous driving.

A2D2 [14] is a multi-modal benchmark featuring synchro-
nized data from multiple cameras and five Velodyne VLP-
16 (16-channel) LiDARs. Semantic and instance-level labels
are annotated on 2D images, which can be projected onto the
corresponding 3D point clouds. This image-based annotation
scheme provides consistent supervision across modalities and
supports the development and evaluation of multi-modal fusion
approaches for 2D/3D semantic scene understanding.

B. Settings

Label mapping. Since [13] and [14] define different class
taxonomies, we restrict our experiments to the ten categories
common to both datasets, following [15]. We select 10 shared
classes between the 2 datasets by merging or ignoring them
(see Tab. 5). The 10 final classes are car, truck, bike, person,
road, parking, sidewalk, building, nature, other-objects. We
adopt mean Intersection-over-Union (mloU) as the evaluation
metric.

Subsampling. To investigate the effect of sensor hetero-
geneity, we augment the SemanticKITTTI training set by emu-
lating different beam configurations. Specifically, 30% of the
training sequences are downsampled to 32-channel scans and
another 30% are downsampled to 16-channel scans, while the
remaining 40% retain the original 64-channel resolution. The
subsampling follows the vertical beam layout of the target
sensors, and for each ray, only the nearest return is preserved
using a z-buffer strategy. This mixed-resolution training set
exposes the model to heterogeneous beam configurations and
enables more robust learning under cross-domain deployment.

1361



TABLE II: Quantitative results per class
(Source: Semantic KITTI)

2 '\0\@ Q'é'
N & 3 & x&*‘ Q\@% N S ‘2;000 é\a
s oY S & & ¥ < & & & &
Target & ¥ W <8 o ]° Ao <> <~ «© &
SemanticKITTI 94.35 67.88 47.29 58.94 68.32 67.06 95.86 82.66 75.98 91.15 74.95
A2D2 43.88 39.42 0.00 12.88 0.00 24.82 1.10 0.85 0.22 39.44 16.27
A2D2 (+Subsampling) | 44.10 38.89 1.04 13.06 0.12 27.00 0.09 1.16 0.51 39.29 16.53

Notes. Source = training dataset, Target = evaluation dataset.

C. Results

Table I reports the domain adaptation performance across
SemanticKITTI(SK) and A2D2. When training and evaluating
within the same dataset (e.g., SK—SK or A2D2—A2D2),
the model achieves relatively high performance without
adaptation. However, transferring directly across datasets
(SK—A2D2 or A2D2—SK) leads to a sharp performance drop
due to distributional discrepancies. Applying the proposed
strategy improves mloU over the source-only baseline, demon-
strating its effectiveness in mitigating domain shift between
heterogeneous LiDAR datasets.

Table II provides per-class IoU scores on SemanticKITTI
and A2D2. The results highlight that well-represented classes
such as Car and Pedestrian achieve high IoU, while long-
tail categories such as Motorcycle and Sidewalk remain more
challenging. The class-wise breakdown reveals dataset-specific
biases and indicates that domain adaptation methods need to
account for both frequent and underrepresented categories to
achieve balanced performance across classes.

V. CONCLUSION

In this work, we examined the performance degradation
arising from domain discrepancies in LiDAR-based semantic
segmentation. While our experiments applied subsampling
strategies to the training data, part of the observed improve-
ment may stem from their effect as a data augmentation
technique rather than from explicit domain adaptation. As a
next step, we plan to explore test-time adaptation approaches
that can operate in a plug-and-play manner, enabling models
to adapt to new domains without additional training cost or
labeled data.
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