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Abstract—Robotic manipulation in unstructured
environments requires not only precise motion control but also
fine regulation of contact forces. Excessive force can break
fragile objects, making reward design for reinforcement
learning difficult. To address this, we propose a simulation and
learning framework that integrates haptic feedback with
adversarial inverse reinforcement learning. Human
demonstrations are collected through haptic teleoperation,
where operators control the manipulator and perceive contact
forces. These demonstrations encode implicit strategies for safe
force regulation. Joint torque-based force estimates are
incorporated into AIRL states, enabling policies that balance
accuracy with force control. Simple breakage conditions in
simulation model fragile interactions. The framework allows
agents to acquire robust, force-aware manipulation strategies
generalizing to delicate and uncertain dynamics.
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Robotic manipulation in unstructured environments
requires far more than simple position accuracy; it demands
adaptive regulation of contact forces under uncertainty.
Unlike structured industrial scenarios where objects are rigid,
geometries are fixed, and trajectories can be pre-programmed,
unstructured settings involve fragile, deformable, or variably
constrained objects that can easily be damaged or mishandled
if the robot applies inappropriate force. For example, inserting
a delicate component, manipulating soft biological tissue, or
writing with chalk on a surface all require the robot not only
to reach a desired position but also to continuously adapt
applied forces at fine granularity. Failure to regulate these
forces can result in breakage, slippage, or task failure, even
when positional accuracy is high. Consequently, developing
policies that balance force precision and trajectory execution
has emerged as a critical challenge in robotic learning.
However, manually designing reinforcement learning (RL)
reward functions that capture this balance remains extremely
difficult: too much emphasis on trajectory can encourage
brittle strategies that ignore contact safety, while excessive
focus on force regulation may hinder task completion. This
makes force-adaptive policy learning in unstructured
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environments a central open problem for advancing robust
robotic autonomy.

Several recent works have investigated aspects of
integrating haptic signals into robot learning and control, yet
important gaps remain. In Haptic-ACT (Haptic Attention over
Contact Trajectories), force-torque signals are treated as
attention cues to highlight salient phases of manipulation and
to guide imitation learning [1]. While this approach
demonstrates that haptic cues can improve generalization
across tasks, it remains centered on augmenting demonstration
efficiency rather than enabling robots to autonomously
acquire novel contact strategies. In contrast, Learning
Variable Impedance Control via IRL successfully recovers
both impedance policies and latent reward functions from
expert demonstrations, enabling robots to adaptively adjust
stiffness and damping during contact [2]. Nevertheless, these
methods are typically task-specific, optimized for one
manipulation skill (e.g., surface wiping or peg insertion), and
therefore struggle to generalize across the diverse and
unpredictable contact conditions encountered in unstructured
environments. Furthermore, research such as TACTO-based
tactile representation learning employs vision-based tactile
sensors to infer latent states and enhance robot perception in
contact-rich scenarios [3]. While such work advances state
estimation under partial observability, it primarily improves
perception rather than teaching the robot how to strategically
adapt its forces during execution.

Despite these advances, none of these approaches fully
leverage haptic feedback as a primary learning signal for
autonomous policy acquisition in unstructured environments.
Teleoperation methods tend to prioritize assisting human
operators rather than enabling robots to learn from the
feedback itself. IRL applications for force control often
remain constrained to pre-specified tasks. And tactile
representation learning focuses on perception instead of
strategic force adaptation. This study aims to close this gap by
integrating haptic feedback directly into the learning loop via
Adversarial Inverse Reinforcement Learning (AIRL). Our
goal is to enable a robot to autonomously develop
generalizable force regulation strategies in environments
where visual or positional cues are insufficient, such as
unpredictable or fragile object interactions. Unlike prior work,
which emphasizes human-centered assistance or narrow
imitation, our approach promotes autonomous robotic
learning of robust contact strategies through skilled
demonstration, enabling better adaptability to real-world
variability
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II. METHODOLOGY

A. System Setup

The experimental platform (Fig. 1) consists of a UR3e
robotic manipulator equipped with a Robotiq 2F-85 parallel
gripper. A piece of chalk is rigidly grasped by the gripper and
interacts directly with a virtual blackboard, where the chalk is
modeled as a rigid body with a simple breakage mechanism
triggered by a force—torque threshold. The simulation
environment was constructed using Isaac Sim, which provides
high-fidelity physics and contact dynamics, while the learning
framework was implemented with Isaac Lab to enable inverse
reinforcement learning.

In addition, a Force Dimension Omega.6 haptic device
(Fig. 2) was used to teleoperate the robot. The user’s hand
motion was mapped to the end-effector pose, and contact
forces from the robot—blackboard interaction were fed back to
the haptic device, allowing the user to feel the forces in real
time.

Fig. 2. Haptic teleoperation setup with the Omega.6 device

B. Force-Aware Learning Framework

During the interaction, external torques at the joints of the
UR3e are measured and used as indirect indicators of contact
forces at the end-effector. These signals are incorporated into
the state representation of the learning framework, enabling
the policy to develop force-aware behaviors.

Instead of conventional reinforcement learning, we
employ Adversarial Inverse Reinforcement Learning (AIRL)

implemented in Isaac Lab. In this setup, expert demonstrations
collected via the Omega.6 haptic device provide trajectories
where the human operator controls the end-effector pose and
perceives contact forces through haptic feedback. The AIRL
framework learns a reward function that captures the implicit
strategies of human demonstrations, while simultaneously
training a policy that replicates these behaviors. The
observation space consists of end-effector position, joint states,
and measured external torques, while the action space is
defined as incremental target poses of the end-effector. This
design encourages smooth and stable chalk—blackboard
interaction while penalizing excessive contact forces that may
lead to chalk breakage.

III. CONCLUSIONS

This work presented a simulation and learning framework
for robot—environment interaction using both force/torque
feedback and inverse reinforcement learning. A UR3e robotic
manipulator with a Robotiq 2F-85 gripper was teleoperated
through a Force Dimension Omega.6 device, enabling
intuitive control and real-time haptic feedback during contact
with a virtual blackboard. Chalk breakage was incorporated
into the environment to realistically model fragile interactions.
External joint torques measured during contact were used as
informative signals for inverse reinforcement learning,
implemented in Isaac Lab. Through this setup, the system
enables robots to acquire policies that are guided not only by
positional trajectories but also by force-based cues, paving the
way for more natural and robust manipulation in tasks
involving delicate contact dynamics. In the next step of this
work, the possibility of applicability to real environments will
be secured through experiments.
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