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Abstract—Robotic manipulation in unstructured 
environments requires not only precise motion control but also 
fine regulation of contact forces. Excessive force can break 
fragile objects, making reward design for reinforcement 
learning difficult. To address this, we propose a simulation and 
learning framework that integrates haptic feedback with 
adversarial inverse reinforcement learning. Human 
demonstrations are collected through haptic teleoperation, 
where operators control the manipulator and perceive contact 
forces. These demonstrations encode implicit strategies for safe 
force regulation. Joint torque–based force estimates are 
incorporated into AIRL states, enabling policies that balance 
accuracy with force control. Simple breakage conditions in 
simulation model fragile interactions. The framework allows 
agents to acquire robust, force-aware manipulation strategies 
generalizing to delicate and uncertain dynamics.
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I. INTRODUCTION 

Robotic manipulation in unstructured environments 
requires far more than simple position accuracy; it demands 
adaptive regulation of contact forces under uncertainty. 
Unlike structured industrial scenarios where objects are rigid, 
geometries are fixed, and trajectories can be pre-programmed, 
unstructured settings involve fragile, deformable, or variably 
constrained objects that can easily be damaged or mishandled 
if the robot applies inappropriate force. For example, inserting 
a delicate component, manipulating soft biological tissue, or 
writing with chalk on a surface all require the robot not only 
to reach a desired position but also to continuously adapt 
applied forces at fine granularity. Failure to regulate these 
forces can result in breakage, slippage, or task failure, even 
when positional accuracy is high. Consequently, developing 
policies that balance force precision and trajectory execution 
has emerged as a critical challenge in robotic learning. 
However, manually designing reinforcement learning (RL) 
reward functions that capture this balance remains extremely 
difficult: too much emphasis on trajectory can encourage 
brittle strategies that ignore contact safety, while excessive 
focus on force regulation may hinder task completion. This 
makes force-adaptive policy learning in unstructured 

environments a central open problem for advancing robust 
robotic autonomy.

Several recent works have investigated aspects of 
integrating haptic signals into robot learning and control, yet 
important gaps remain. In Haptic-ACT (Haptic Attention over 
Contact Trajectories), force-torque signals are treated as 
attention cues to highlight salient phases of manipulation and 
to guide imitation learning [1]. While this approach 
demonstrates that haptic cues can improve generalization 
across tasks, it remains centered on augmenting demonstration 
efficiency rather than enabling robots to autonomously 
acquire novel contact strategies. In contrast, Learning 
Variable Impedance Control via IRL successfully recovers 
both impedance policies and latent reward functions from 
expert demonstrations, enabling robots to adaptively adjust 
stiffness and damping during contact [2]. Nevertheless, these 
methods are typically task-specific, optimized for one 
manipulation skill (e.g., surface wiping or peg insertion), and 
therefore struggle to generalize across the diverse and 
unpredictable contact conditions encountered in unstructured 
environments. Furthermore, research such as TACTO-based 
tactile representation learning employs vision-based tactile 
sensors to infer latent states and enhance robot perception in 
contact-rich scenarios [3]. While such work advances state 
estimation under partial observability, it primarily improves 
perception rather than teaching the robot how to strategically 
adapt its forces during execution.

Despite these advances, none of these approaches fully 
leverage haptic feedback as a primary learning signal for 
autonomous policy acquisition in unstructured environments. 
Teleoperation methods tend to prioritize assisting human 
operators rather than enabling robots to learn from the 
feedback itself. IRL applications for force control often 
remain constrained to pre-specified tasks. And tactile 
representation learning focuses on perception instead of 
strategic force adaptation. This study aims to close this gap by 
integrating haptic feedback directly into the learning loop via 
Adversarial Inverse Reinforcement Learning (AIRL). Our 
goal is to enable a robot to autonomously develop 
generalizable force regulation strategies in environments 
where visual or positional cues are insufficient, such as 
unpredictable or fragile object interactions. Unlike prior work, 
which emphasizes human-centered assistance or narrow 
imitation, our approach promotes autonomous robotic 
learning of robust contact strategies through skilled 
demonstration, enabling better adaptability to real-world 
variability

This work was supported by a National Research Foundation of Korea 
(NRF) grant funded by the Korean Government (Ministry of Science and 
ICT, MSIT) (No. RS-2023-NR076925, 50%) and in part by the Ministry of 
Science and ICT (MSIT), South Korea, through the Information Technology 
Research Center (ITRC) Support Program under Grant (IITP-2025-RS-
2024-00437190, 50%) supervised by the Institute for Information and 
Communications Technology Planning and Evaluation (IITP).

1138979-8-3315-5678-5/25/$31.00 ©2025 IEEE ICTC 2025



II. METHODOLOGY

A. System Setup

The experimental platform (Fig. 1) consists of a UR3e 
robotic manipulator equipped with a Robotiq 2F-85 parallel 
gripper. A piece of chalk is rigidly grasped by the gripper and 
interacts directly with a virtual blackboard, where the chalk is 
modeled as a rigid body with a simple breakage mechanism 
triggered by a force–torque threshold. The simulation 
environment was constructed using Isaac Sim, which provides 
high-fidelity physics and contact dynamics, while the learning 
framework was implemented with Isaac Lab to enable inverse 
reinforcement learning.

In addition, a Force Dimension Omega.6 haptic device 
(Fig. 2) was used to teleoperate the robot. The user’s hand 
motion was mapped to the end-effector pose, and contact 
forces from the robot–blackboard interaction were fed back to 
the haptic device, allowing the user to feel the forces in real 
time.

Fig. 1. UR3e manipulator holding a piece of chalk

Fig. 2. Haptic teleoperation setup with the Omega.6 device

B. Force-Aware Learning Framework

During the interaction, external torques at the joints of the 
UR3e are measured and used as indirect indicators of contact 
forces at the end-effector. These signals are incorporated into 
the state representation of the learning framework, enabling 
the policy to develop force-aware behaviors.

Instead of conventional reinforcement learning, we 
employ Adversarial Inverse Reinforcement Learning (AIRL) 

implemented in Isaac Lab. In this setup, expert demonstrations 
collected via the Omega.6 haptic device provide trajectories 
where the human operator controls the end-effector pose and 
perceives contact forces through haptic feedback. The AIRL 
framework learns a reward function that captures the implicit 
strategies of human demonstrations, while simultaneously 
training a policy that replicates these behaviors. The 
observation space consists of end-effector position, joint states, 
and measured external torques, while the action space is 
defined as incremental target poses of the end-effector. This 
design encourages smooth and stable chalk–blackboard 
interaction while penalizing excessive contact forces that may 
lead to chalk breakage.

III. CONCLUSIONS

This work presented a simulation and learning framework 
for robot–environment interaction using both force/torque 
feedback and inverse reinforcement learning. A UR3e robotic 
manipulator with a Robotiq 2F-85 gripper was teleoperated 
through a Force Dimension Omega.6 device, enabling 
intuitive control and real-time haptic feedback during contact 
with a virtual blackboard. Chalk breakage was incorporated 
into the environment to realistically model fragile interactions. 
External joint torques measured during contact were used as 
informative signals for inverse reinforcement learning, 
implemented in Isaac Lab. Through this setup, the system 
enables robots to acquire policies that are guided not only by 
positional trajectories but also by force-based cues, paving the 
way for more natural and robust manipulation in tasks 
involving delicate contact dynamics. In the next step of this 
work, the possibility of applicability to real environments will 
be secured through experiments.
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