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Abstract—By disaggregating base station functions, Open Ra-
dio Access Network (O-RAN) enables enhanced interoperability,
scalability, and intelligence throughout the RAN infrastructure.
However, end devices within the O-RAN environment continue
to face constraints in computing power, memory, and energy
capacity. To address these limitations, task offloading emerges as
a critical solution. This paper investigates representative O-RAN
deployment scenarios and explores current research trends.

Index Terms—O-RAN, deployment scenarios, task offloading.

I. INTRODUCTION

Open Radio Access Network (O-RAN) has emerged as
a transformative architecture for next-generation mobile net-
works, aiming to address the limitations of traditional, vendor-
locked RAN systems. By disaggregating the base station func-
tions into the O-RAN Central Unit (CU), O-RAN Distributed
Unit (DU), and O-RAN Radio Unit (RU), O-RAN fosters
interoperability, scalability, and intelligence across the RAN
infrastructure [1]. To enhance the flexibility of O-RAN, O-
RAN Alliance introduces various deployment scenarios (Sce-
nario A to F in Fig. 1).

Despite these architectural advancements, end devices in
the O-RAN environment still suffer from limited computing
power, memory, and battery life. As applications such as
augmented reality, autonomous driving, and real-time video
analytics become increasingly computation-intensive, device-
side processing often results in unacceptable latency. To ad-
dress this challenge, recent studies have increasingly focused
on task offloading, recognizing it as a promising solution
for alleviating computational burdens and enhancing system
performance [2]. In this paper, we examine the various de-
ployment scenarios of O-RAN and research trends.

II. O-RAN DEPLOYMENT SCENARIOS

O-RAN is composed of several components, including
the Service Management and Orchestration (SMO), O-Cloud,
RAN Intelligence Controller (RIC), O-CU, O-DU, O-RU, R1,
A1, O1, O2, E2, and O-RAN Fronthaul. As shown in Fig. 1,
O-RAN Alliance introduces various deployment scenarios [3].
Scenario A: Near-RT RIC, O-CU, and O-DU are co-located
on the same edge cloud platform, enabling low-latency coor-
dination. This setup is ideal for dense urban areas with high
fronthaul capacity, allowing centralized baseband processing.
An open fronthaul connects the O-DU to the O-RU.
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Fig. 1. O-RAN deployment scenarios.

Scenario B: Near-RT RIC is deployed at a regional cloud,
while the O-CU and O-DU are co-located at an edge cloud.
The E2 interface connects the Near-RT RIC with both O-
CU and O-DU across these locations. This setup is designed
for areas with limited fronthaul capacity and geographically
dispersed O-RUs. It helps reduce latency by placing compute
functions closer to the cell sites, while the centralized Near-RT
RIC enables coordinated control.
Scenario C: Near-RT RIC and O-CU are deployed on a re-
gional cloud, while the O-DU is placed on an edge cloud. The
Near-RT RIC and O-CU share the same cloud platform and
are connected to the O-DU via both F1 and E2 interfaces. This
scenario is suitable for deployments with limited fronthaul
capacity and widely distributed O-RUs. It improves resource
efficiency by pooling control-plane functions centrally while
maintaining low-latency data-plane processing at the edge.
Scenario C.1 and C.2 are two variations to handle network
slice instances.
Scenario D: Scenario D is a variant of Scenario C, where
the O-DU is replaced by a non-virtualized (physical) O-DU at
the edge location. The Near-RT RIC and O-CU remain in the
regional cloud, connected to the physical O-DU via F1 and
E2 interfaces. This scenario is used when a fully virtualized
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O-Cloud deployment is not feasible due to cost, deployment
timeline, or implementation constraints.
Scenario E: Both O-DU and O-RU are implemented on
the same cloud platform at the cell site, possibly leveraging
acceleration hardware if needed. Meanwhile, the Near-RT RIC
and O-CU remain at the regional cloud, connected via E2 and
F1 interfaces.
Scenario F: O-RU is deployed at cell site, while O-DU is
deployed at Edge cloud. The O-CU and Near-RT RIC remain
at the regional cloud.

III. RESEARCH TRENDS

The authors in [4] address the problem of minimizing end-
to-end task delay in Open RAN by jointly optimizing task
offloading and fronthaul segment routing. Unlike traditional
systems with fixed paths, the disaggregated structure of Open
RAN allows dynamic routing through multiple intermediate
nodes like DU pools. The authors propose a Deep Q-Learning
(DQL) framework to make offloading and routing decisions
based on real-time task and network states. The state space
includes current local computation, cloud computation, and
offloading using wireless and fronthaul states. The action space
consists of offloading decisions, communication resource al-
location and routing decisions, and computation resources
allocation decisions. Reward is formulated to minimize total
delay. To ensure scalability and data privacy, they integrate
Federated Learning (FL) so that each node trains its local Q-
network and only shares model updates.

The authors in [5] propose an Age of Processing (AoP)-
based offloading strategy for autonomous vehicles in a Multi-
RAT O-RAN environment. AoP refers to the duration between
task generation and the reception of the corresponding com-
putation result. The system consists of vehicles generating
computation task, which can be processed locally or offloaded
via multiple RATs (e.g., LTE, 5G NR) to edge servers man-
aged under Open RAN. This paper considers 4 scenarios: 1)
perform task computation locally, 2) offload the task directly
to the nearest edge cloud, 3) offload the task to another
edge cloud, and 4) offload the task to the regional cloud
through an edge cloud. To solve AoP minimization problem,
authors transform the surrogate problem into an unconstrained
optimization problem using the Lagrangian method, followed
by the application of the dual decomposition technique.

The authors in [6] focus on intelligent task offloading
and resource allocation in O-RAN. They use a Proximal
Policy Optimization (PPO)-based solution which is one of
the reinforcement learning algorithms. The paper distinguishes
between URLLC and mMTC service types by assigning two
different reward functions tailored to their QoS needs:

• For URLLC service, the reward function prioritizes la-
tency minimization and SLA violation.

• For mMTC service, the reward function focuses on en-
ergy efficiency, allowing for more relaxed latency con-
straints.

The state space consists of slice type, number of bytes,
number of CPU cycles, acceptable latency, remaining com-

munication and computational resources, CPU frequency of
user, and CPU frequency of each computational resource.
The action space includes number of communication resource
blocks and computation resources allocated to user.

The authors in [7] proposes Oranits, a unified optimization
framework for mission assignment and task offloading in
O-RAN-based Intelligent Transportation Systems (ITS). The
system integrates O-RAN and Mobile Edge Computing (MEC)
to enable real-time cooperation among autonomous vehicles,
with a focus on mission dependencies, offloading costs, and
adaptive coordination. The main objective is to maximize
the number of missions completed before their deadlines,
while minimizing delay and offloading cost. Authors propose
metaheuristic algorithm, Chaotic Gaussian-based Global ARO
(CGG-ARO), Multi-agent Double Deep Q-Network (MA-
DDQN) to solve the problem.

IV. CONCLUSION

This paper examines the deployment scenarios of O-RAN
and research trends. Aforementioned, approaches such as
DRL, federated learning, and dual decomposition methods
demonstrate the growing potential of intelligent scheduling
in disaggregated network environments. Future research could
explore graph neural network–based approaches that effec-
tively capture the spatial characteristics of O-RAN.
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