
Investigating the Effects of Negative Sampling
in Knowledge Graph Completion

Sooho Moon
Chung-Ang University

Seoul, Korea
moonwalk725@cau.ac.kr

Yunyong Ko*

Chung-Ang University
Seoul, Korea

yyko@cau.ac.kr

Abstract—Knowledge graphs (KGs) are powerful tools for
representing structured knowledge, but their incompleteness
limits the effectiveness in real-world applications. Knowledge
graph completion (KGC) addresses this issue effectively, with
negative sampling (NS) playing a crucial role in training KGC
models. However, the impact of NS has not been systematically
explored. In this paper, we investigate how the number of negative
triples per positive triple affects the performance of KGC models.
Experiments on four state-of-the-art models reveal the following
findings: (1) NS consistently improves performance; (2) the
performance gain diminishes as more negatives are used, with
excessive negatives sometimes degrading model performance; and
(3) sensitivity varies across KGC models, indicating that the
optimal number of negatives is model-dependent. These insights
provide practical guidance for designing more effective negative
sampling strategies in KGC.

Index Terms—Knowledge graph completion, Negative sam-
pling, Knowledge graph embedding

I. INTRODUCTION

A knowledge graph (KG) is a graph-structured representa-
tion of real-world knowledge, where an entity is represented
as a node and a relation between two entities is represented as
an edge in the form of a triple (h, r, t). KGs have been widely
used across a range of applications [?], [1]–[3]. Unfortunately,
real-world KGs are inherently incomplete [6], [7], i.e., a
number of facts are missing. This fundamental limitation can
hinder the potential of KGs. To address this, knowledge graph
completion (KGC) has been widely studied [4]–[9], where
the goal is to infer missing facts based on the observed KG
structure, i.e., link prediction on KGs. Specifically, given a
KG, a KGC model predicts the missing entity when either the
head or the tail entity is unknown, i.e., in the form of (h, r, ?)
or (?, r, t).

In real-world KGs, however, the number of existing triples is
often limited [12]. Such sparsity is a fundamental cause of low
accuracy in KGC. To address this problem, negative sampling
(NS) is usually adopted [4]–[8], utilizing non-existing facts
(i.e., negative triples) as contrastive information for training
KGC models. Specifically, a KGC model is trained so that pos-
itive triples get higher scores (or lower ranks) while negative
triples get lower scores (or higher ranks), thereby improving
the distinguishing ability of the KGC model. Thus, it is critical

*Corresponding author

to carefully sample negative triples to maximize the effect of
negative sampling.

In spite of the critical role that negative sampling (NS)
plays in training KGC models, it has not yet been thoroughly
investigated. In particular, some fundamental questions remain
largely unexplored: (Q1) How many negative triples should be
contrasted against each positive triple? and (Q2) How should
negative triples be generated? Most existing studies [4]–
[8] adopt a simple heuristic sampling strategy, sampling a
fixed number K (commonly 64 or 128) of negative triples
uniformly at random for each positive triple, without deeper
consideration of these design choices.

To bridge this gap, in this paper, we conduct a systematic
investigation into the effect of negative sampling. Specifically,
we focus on (Q1) to analyze how the number of negative
triples per positive triple affects the performance of KGC
models, aiming to provide new insights into the design of
more effective negative sampling strategies.

Through extensive experiments with four state-of-the-art
KGC models, we report the following key findings:

• Consistent effectiveness: Negative sampling consistently
improves the performance of KGC models. Moreover,
increasing the number of negative triples per positive
triple generally leads to further performance gains.

• Diminishing returns with more negatives: The perfor-
mance improvement becomes marginal as the number of
negative triples grows. In some cases, using an exces-
sively large number of negatives (e.g., greater than 256
or 1,024) even results in performance degradation.

• Model-dependent sensitivity: The degree of improve-
ment and the point at which performance begins to drop
vary across different models, suggesting that the optimal
number of negatives should be tailored to each model.

II. RELATED WORKS

In this section, we introduce existing embeddings-based
KGC models, which aim to represent entity and relation as
embedding vectors in a latent space, while preserving the
semantic meaning of triples through algebraic operations in
the embedding space. TransE [4] represents each relation
as a translation vector such that the head entity translated
by the relation is closer to the tail entity. RotatE [7], the
improved version of TransE, represents each relation as a

903979-8-3315-5678-5/25/$31.00 ©2025 IEEE ICTC 2025

2-dimensional rotation in complex space to better capture
diverse relation patterns such as symmetry and inversion.
HousE [8] employs Householder transformations for both
rotation and projection in the embedding space to capture more
expressive relation patterns. DistMult [5] adopts a bi-linear
scoring function with diagonal matrices to model symmetric
relations. ComplEx [6] extends DistMult to complex number
systems in order to model asymmetric relations. TuckEr [9]
applies three-way Tucker tensor decomposition to KGC for
capturing rich interactions between entities and relations.

III. NEGATIVE SAMPLING IN KGC
In this section, we define the problem of knowledge graph

completion and describe negative sampling in KGC.
PROBLEM 1 (KNOWLEDGE GRAPH COMPLETION). Given a
knowledge graph (KG) G = (E ,R, T), where E is the set of
entities, R is the set of relations, and T = {(h, r, t)|h, t ∈
E , r ∈ R} is the set of triples (i.e., facts), the goal of
knowledge graph completion (KGC) is to infer missing facts
based on the observed KG.
KGC model training with negative triples. Given a KGC
model θ(·) : (|E| × |R| × |E| → R1), a positive triple
q = (h, r, t), and its K corresponding negative triples q̃i(i≤K),
the parameters of a KGC models are trained to minimize the
following loss function:

L = −θ(q) +
1

K

K∑
i=1

θ(q̃i). (1)

Thus, the parameters of a KGC models are trained so that
positive triples obtain higher scores than negative triples.
Negative sampling in KGC. Given a positive triple q =
(h, r, t), negative triples are typically generated by corrupting
either the head entity h or the tail entity t with another entity
e from the entity set E . Thus, a negative triple q̃ takes the form
of (h′, r, t) where h′ ̸= h, or (h, r, t′) where t′ ̸= t. There are
some strategies for selecting which entity to corrupt:

• Random sampling: The most common strategy is to
uniformly sample a replacement entity from the entire
entity set E . Thanks to its simplicity and generality,
this method has been widely adopted in many existing
works [4]–[8].

• In-batch sampling: Instead of sampling from the entire
entity set E , the replacement entity is restricted to those
appearing in the current mini-batch B. This approach
improves efficiency but often suffers from limited sample
diversity, since candidate entities are extracted from a
relatively small subset of entities.

In our experiments, we adopt the random sampling, in order to
systematically investigate the effect of the number of negative
triples per positive triple.

IV. EXPERIMENTAL VALIDATION

A. Experimental Setup

1) KG dataset: In our experiments, we use a widely-used
real-world knowledge graphs (KGs), FB15k237 [10], derived

from a large-scale general-purpose knowledge base, Freebase.
It contains facts about a wide range of real-world entities,
including people, locations, films, organizations, and more.
Table I shows the data statistics.

TABLE I
STATISTICS OF FB15K237 DATASET.

of entities # of relations # of triples Avg. degree Max. degree
14,541 237 272,115 37.5 7,614

2) KGC models: We use four state-of-the-art KGC models:
4 embedding-based models (TransE [4], RotatE [7], Com-
plEx [6], DistMult [5]) For all KGC models, we use the official
source codes provided by the authors.

3) Evaluation protocol: We evaluate all KGC models by
using the protocol exactly same as that used in [11]. Each
dataset is split into training, validation, and test sets, with
different ratios depending on the dataset. Each KGC model is
trained based on the training set, and its accuracy is evaluated
on the validation set at every epoch. We save the model
checkpoint that achieves the best accuracy on the validation
set. As evaluation metrics, we use the following rank-based
metrics:

• Mean rank (MR): The average rank position of the correct
entity among all candidates (lower values indicate better
performance).

MR =
1

Q

Q∑
i=1

ri (2)

• Mean reciprocal rank (MRR): The average of the recip-
rocal ranks of the correct entity (higher values indicate
better performance).

MRR =
1

Q

Q∑
i=1

1

ri
(3)

• Hits@K: The proportion of test triples for which the
correct entity appears within the top-K ranked candidates
(higher values indicate better performance).

Hit@K =
1

Q

Q∑
i=1

I[ri ≤ K] (4)

4) Implementation details: We implement our experimental
codes by using python 3.11.2 on Ubuntu 22.04.4. We run all
experiments on the machine equipped with an Intel i7-13700F
CPU with 32GB main memory and two NVIDIA RTX 4080
GPUs, each of which has 16GB memory and is installed with
CUDA 12.2 and cuDNN 8.9.7.

B. Experimental Results

Consistent effectiveness: We first compare the performance of
KGC models with and without negative sampling (NS). For the
baseline setting (w/o NS), no negative triples are used during
training, whereas in the negative sampling setting (w/ NS),
256 negative triples are used per each positive triple. As shown
in Table II, all KGC models consistently achieve significant

904

TABLE II
PERFORMANCE COMPARISON OF KGC MODELS DEPENDING ON WHETHER NEGATIVE SAMPLING (NS) IS APPLIED.

TransE [4] DistMult [5] ComplEx [6] RotatE [7]

Metrics MR MRR Hits@1 Hits@3 MR MRR Hits@1 Hits@3 MR MRR Hits@1 Hits@3 MR MRR Hits@1 Hits@3

w/o NS 1576.16 0.104 0.069 0.109 824.20 0.145 0.104 0.147 799.71 0.166 0.120 0.172 4176.94 0.014 0.007 0.012

w/ NS 244.71 0.291 0.200 0.323 203.40 0.291 0.206 0.318 201.00 0.316 0.223 0.347 221.07 0.310 0.218 0.343
Gain +84% +180% +190% +197% +75% +101% +99% +116% +75% +90% +85% +101% +95% +2,070% +2,919% +2,716%

0 1 4 16 64 256 1024
n

0

1000

2000

3000

4000

M
R

TransE
DistMult
ComplEx
RotatE

0 1 4 16 64 256 1024
n

0.0

0.1

0.2

0.3

M
R
R

TransE
DistMult
ComplEx
RotatE

0 1 4 16 64 256 1024
n

0.0

0.1

0.2

H
its
@
1

TransE
DistMult
ComplEx
RotatE

0 1 4 16 64 256 1024
n

0.0

0.1

0.2

0.3

H
its
@
3

TransE
DistMult
ComplEx
RotatE

(a) MR (b) MRR (c) Hits@1 (d) Hits@3

Fig. 1. Performance comparison of KGC models under varying numbers of negative triples per positive triple.

performance improvements when negative sampling is applied.
This demonstrates that the use of negative sampling has a
crucial impact on model performance.

Diminishing returns with more negatives: Next, we analyze
how the performance of KGC models varies with different
numbers of negatives per positive triple. Specifically, we eval-
uate each models with 0, 1, 4, 16, 64, 256, and 1,024 negatives
per positive triple. As shown in Figure 1, the performance gain
diminishes as the number of negative triples, and finally, most
models reach performance saturation after a certain negative
sampling size (64-256).

Model-dependent sensitivity: Finally, we observe that the
effect of negative sampling varies across different models.
Among the KGC models, RotatE exhibits the largest per-
formance gain from negative sampling in our experiments,
indicating that the effectiveness of negative sampling strategies
is model-dependent.

V. CONCLUSION

In this paper, we conduct a systematic investigation into the
effects of negative sampling in knowledge graph completion,
especially focusing on the number of negative triples per
positive triple. Our extensive experiments on four state-of-
the-art KGC models reveal three key findings: (1) negative
sampling consistently improves the performance of KGC
models; (2) the performance gain diminishes as the number of
negatives increases, and excessive negatives may even degrade
performance; and (3) the sensitivity to the number of negatives
varies across models, indicating that the optimal choice is
model-dependent.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government

(MSIT) (RS-2024-00459301).

REFERENCES

[1] L. Li, P. Wang, J. Yan, Y. Wang, S. Li, J. Jiang, Z. Sun, B. Tang, T.-
H. Chang, and S. Wang, “Real-world data medical knowledge graph:
Construction and applications,” Artif. Intell. Med., vol. 103, p. 101817,
2020.

[2] M. Rotmensch, Y. Halpern, A. Tlimat, S. Horng, and D. Sontag,
“Learning a health knowledge graph from electronic medical records,”
Sci. Rep., vol. 7, no. 1, p. 5994, 2017.

[3] Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong, and Q. He, “A
survey on knowledge graph-based recommender systems,” IEEE Trans.
Knowl. Data Eng., vol. 34, no. 8, pp. 3549–3568, 2020.

[4] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in Proc.
Adv. Neural Inf. Process. Syst. (NeurIPS), vol. 26, 2013.

[5] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities
and relations for learning and inference in knowledge bases,” in Proc.
Int. Conf. Learn. Representations (ICLR), 2015.

[6] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard,
“Complex embeddings for simple link prediction,” in Proc. Int. Conf.
Mach. Learn. (ICML), pp. 2071–2080, 2016.

[7] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang, “RotatE: Knowledge graph
embedding by relational rotation in complex space,” in Proc. Int. Conf.
Learn. Representations (ICLR), 2019.

[8] R. Li, J. Zhao, C. Li, D. He, Y. Wang, Y. Liu, H. Sun, S. Wang,
W. Deng, Y. Shen, et al., “House: Knowledge graph embedding with
householder parameterization,” in Proc. Int. Conf. Mach. Learn. (ICML),
pp. 13209–13224, 2022.

[9] I. Balazevic, C. Allen, and T. Hospedales, “TuckER: Tensor factorization
for knowledge graph completion,” in Proc. Conf. Empirical Methods
Nat. Lang. Process. (EMNLP-IJCNLP), pp. 5185–5194, 2019.

[10] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase:
A collaboratively created graph database for structuring human knowl-
edge,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, pp. 1247–1250,
2008.

[11] Z. Sun, S. Vashishth, S. Sanyal, P. Talukdar, and Y. Yang, “A re-
evaluation of knowledge graph completion methods,” in Proc. Annu.
Meeting Assoc. Comput. Linguistics (ACL), pp. 5516–5522, Jul. 2020.

[12] C. T. Hoyt, M. Berrendorf, M. Galkin, V. Tresp, and B. M. Gyori, “A
unified framework for rank-based evaluation metrics for link prediction
in knowledge graphs,” in Proc. Graph Learn. Benchmarks Workshop,
TheWebConf, 2022.

905

