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Abstract—A polynomial commitment scheme (PCS) enables a
prover to commit to a polynomial and later prove the correctness
of its evaluation without revealing the polynomial. Although
discrete logarithm-based PCSs offer succinct proofs, they are
not quantum-safe. Lattice-based PCSs provide post-quantum
security and additive homomorphism, making them suitable for
applications such as zero-knowledge proofs and secure multi-
party computation. In this article, we review two recent lattice-
based PCSs, Greyhound and HyperWolf, both relying on the
Module-SIS assumption but differing in target polynomial classes
and proof techniques. In particular, Greyhound achieves a
smaller proof size O(log logN) through folding and LaBRADOR
proofs, while HyperWolf supports univariate and multilinear
polynomials with lower verifier cost O(logN) using hypercube
evaluation.

Index Terms—Polynomial commitment schemes, Post-quantum
cryptography, Lattice-based cryptography

I. INTRODUCTION

A polynomial commitment scheme (PCS) is a cryptographic
primitive that allows a prover to commit to a degree-bounded
polynomial f and later produce a succinct proof π to convince
a verifier that a claimed evaluation y = f(x) is correct, without
revealing f in its entirety. PCS has become a fundamental
building block in numerous cryptographic protocols, including
verifiable secret sharing (VSS) [1], secure multi-party compu-
tation (MPC) [2], and zero-knowledge succinct non-interactive
arguments of knowledge (zkSNARKs) [3]–[5].

The concept of PCS was first introduced in [6], where the
authors proposed a construction for univariate polynomials
based on the discrete logarithm (DL) assumption. Since then,
significant progress has been made in the extension of PCS to
multilinear [5], [7] and multivariate polynomials [8]–[10], still
under the DL assumption. PCSs based on DL enjoy constant
or sublinear proof size and verification cost, but are vulnerable
to quantum attacks.

An alternative approach is to construct PCS from error-
correcting codes (ECCs) [11], [12], which are believed to
remain secure against quantum adversaries. However, such
constructions typically do not preserve homomorphic prop-
erties, limiting their applicability in protocols that require
efficient proof composition.
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Lattice-based PCS provides both post-quantum security and
(additive) homomorphism, due to the natural homomorphic
structure of underlying lattices. Many PCSs based on lattices
have been proposed [13]–[16], offering various trade-offs in
proof size, efficiency, and supported polynomial classes. In this
work, we focus on the recently proposed lattice-based PCSs,
Greyhound [14] and H yperWolf  [15], which rely on the same
lattice assumption and employ similar techniques for poly-
nomial evaluation. Our study compares their design choices,
underlying assumptions, and performance characteristics.

II. PRELIMINARIES

Notation. Let λ be the security parameter. For n ∈ N, we
define [n] := {0, ..., n− 1}. Let q be an odd prime and define
the ring of integers modulo q as Zq := Z/qZ. For a power of
two d, Rq := Zq[X]/(Xd + 1) be the ring of integers of the
2d-th cyclotomic field where Zq[X] is the ring of polynomials
over Zq . R×

q denotes the set of invertible elements in Rq . For

a set S, s $← S denotes that s is sampled uniformly at random
from S.

Bold symbols (e.g., a, a⃗,A) denote elements, vectors, or
matrices over Rq , while their non-bold counterparts (e.g.,
a, a⃗, A) denote corresponding objects over Zq . For f =∑d−1

i=0 fiX
i ∈ Rq , ct(f) = f0 denotes the constant term of

f . For a ring element f ∈ Rq and a ring vector f⃗ ∈ Rn
q ,

their ℓp-norms are defined as ∥f∥p :=
(∑d−1

i=0 |fi|p
)1/p

and

∥⃗f∥p :=
(∑n−1

i=0 ∥fi∥pp
)1/p

. Throughout the paper, unless
otherwise specified, we refer to the ℓ2-norm as ∥ · ∥.

A. Gadget Matrix

For a positive integer b ≥ 2, we define the gadget vector
g⃗Tb = (1, b, b2, ..., bδ−1), where δ = ⌈logb q⌉. Then, the gadget
matrix Gb,n is defined as Gb,n := Im⊗g⃗Tb where Im is the m×
m identity matrix and A⊗ B denotes the Kronecker product
between matrices A and B. We define the inverse function
G−1

b,n : Rn×m
q → Rδn×m

q which decomposes each entry with
respect to the base b. For a matrix A ∈ Rn×m

q , Â = G−1
b,n(A)

denotes the decomposition of A. We have Gb,nG
−1
b,n(A) = A

and ∥Âi∥ ≤ a
2

√
δn for each column Âi of Â.
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B. Conjugation Automorphism

Let σ−1 : Rq → Rq be the conjugation automorphism,
which maps X to X−1. Given a ∈ Rq , the automorphism of
a is defined as

σ−1(a) =
d−1∑
i=0

aiX
−i = a0 −

d−1∑
i=1

aiX
d−i.

For vectors a⃗, b⃗ ∈ Rn
q , if their coefficients are represented as

a⃗, b⃗ ∈ Znd
q , then the inner product between a⃗ and b⃗ is equal

to ct(⟨σ−1(a⃗), b⃗⟩).

C. Interactive Proof

Let R ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ be a ternary relation.
For a triple (pp, x, w) ∈ R, we refer to pp as the public
parameter, x as the statement, and w as the witness for x. We
denote R(pp, x) := {w : (pp, x, w) ∈ R}.

Definition II.1 (Interactive Proof System). An interactive
proof system Π = (S,P,V) for a relation R is an inter-
active protocol consisting of three probabilistic polynomial-
time (PPT) algorithms: the setup algorithm S , prover P and
verifier V . The goal of the system is to enable P to convince
V that it possesses a witness w for a given statement x. Both
P and V take as public input the statement x and the public
parameters pp, while P additionally holds a private witness
w ∈ R(pp, x). At the end of the protocol, V accepts the claim
of P if (pp, x, w) ∈ R holds; otherwise, it rejects.

We write an interactive protocol between P and V to obtain
the communication transcript tr and the V’s decision bit b as
(tr, b) ← ⟨P(pp, x, w),V(pp, x)⟩. If V accepts the claim of
P , we set b = 1, and b = 0 otherwise.

Definition II.2 (Completeness). An interactive proof system
Π = (S,P,V) for the relation R achieves completeness
with completeness error ϵ(λ) if, for every valid instance
(pp, x, w) ∈ R, the probability that V rejects (i.e., outputs
b = 0) is at most ϵ(λ) + negl(λ).

We say that Π achieves perfect completeness when the
completeness error ϵ(λ) = 0.

Definition II.3 (Knowledge Soundness). An interactive proof
system Π = (S,P,V) for the relation R is said to be
knowledge sound with knowledge error ε(λ) if there exists
an expected PPT extractor E such that, for any stateful
PPT adversary P∗, the probability that P∗ generates a tuple
(x,w∗) and convinces V to accept (i.e., b = 1), while the
extractor E fails to find a witness w with (pp, x, w) ∈ R, is
at most ε(λ) + negl(λ).

The extractor E is given black-box oracle access to the
(malicious) prover P∗ and may rewind it to any point in the
interaction.

D. Polynomial Commitment Scheme

The PCS is a cryptographic primitive that allows a prover to
commit to a polynomial f (typically through its coefficients),
and later prove the correctness of its evaluation at a chosen

point. Throughout the paper, we focus on PCSs in the inter-
active setting.

Definition II.4 (Polynomial Commitment Scheme (PCS)).
The PCS for f ∈ Z<N

q [X] with slack space SL consists of
the following four PPT algorithms:

• Setup(1λ) → pp: On input the security parameter λ,
output the public parameter pp.

• Commit  (pp, f) → (cm , st): On input pp and a polyno-
mial f , output a commitment cm and a decommitment
state st.

• Open (pp, cm , f, st, c) → 0/1: On input pp, a commit-
ment cm , a polynomial f , a decommitment state st, and a
relaxation factor c ∈ SL, output a bit indicating whether
cm is a valid commitment to f under pp.

• Verify(pp, cm , x, y; (f, st)): An interactive protocol be-
tween prover P and verifier V , where the common input
is pp, a commitment cm , an evaluation point x, and a
value y. P additionally holds f and st.

The PCS must satisfy evaluation completeness, weak bind-
ing, and knowledge soundness, formally defined below.

Definition II.5 (Evaluation Completeness). A PCS PCS =
(Setup, Commit  , Open , Verify) satisfies evaluation complete-
ness with completeness error ϵ(λ) if for every polynomial f
and any evaluation point x ∈ Z, the probability that the veri-
fier rejects valid proof from P for y = f(x) is ϵ(λ)+negl(λ).

Definition II.6 (Weak Binding). A PCS PCS =
(Setup, Commit  , Open , Verify) satisfies weak binding if
for every PPT adversary A, the probability that A generates
two distinct and valid tuples (f, st, c) and (f ′, st′, c′) such
that both tuples open successfully to the same commitment
cm under the same public parameters pp is negligible.

Definition II.7 (Knowledge Soundness). A PCS PCS =
(Setup, Commit  , Open , Verify) is knowledge sound with
knowledge error ε(λ) if for every stateful PPT adversary P∗,
the probability that V accepts the proof of P∗ for f(x) = y
where either cm is not a commitment to f or y is not the
evaluation of f at x is ε(λ) + negl(λ).

E. Inner and Outer Commitment with Lattice Problems

First, we recall the standard module short integer solu-
tion (Module-SIS) assumption [17].

Definition II.8 (Module-SIS). We say that the module short
integer solution assumption MSIS n,m,q,β holds if for any PPT
adversary A, the following holds:

Pr

[
Az⃗ = 0⃗ ∧ 0 < ∥z⃗∥ ≤ β

∣∣∣∣
A ← Rn×m

z⃗ ← A(A)

]
≤ negl(λ).

Next, we recall the inner and outer commitments from [18].
Let λ be the security parameter, and let n,m, r, b, q ∈ Z be
positive integers. Denote by β̄, γ̄, τ̄ > 0 the security-related
norm bounds, and set δ = ⌈logb q⌉. Given the public parameter
pp = (A ∈ Rκ×m

q ,B ∈ Rκ×κδn
q ), we define the commitment

to a matrix S = {⃗s0, ..., s⃗n−1} ∈ Rm×n
q in two steps:
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1. Compute the inner commitments cm in,i := As⃗i ∈ Rκ
q .

2. Compute the outer commitment cm out := Bĉm in where
ĉm in := (G−1

b,κ(cm in,i))i∈[n].

A weak opening for the commitment cm out is a tuple
(⃗si, ĉm in,i, ci)i∈[n] which satisfies all the following conditions:

∥ci⃗si∥ ≤ β̄, ∥ci∥ ≤ τ̄ , ci ∈ R×
q ,As⃗i = Gb,κĉm in,i,

B




ĉm in,0

...
ĉm in,n−1


 = cm out and

�������




ĉm in,0

...
ĉm in,n−1




�������
≤ τ̄ .

The above inner and outer commitment scheme satisfies the
binding property under the Module-SIS assumption.

Lemma II.1. [14, Lemma 2.11] There is a deterministic
algorithm, that given two weak openings (⃗si, ĉm in,i, ci)i∈[n]

and (⃗s′i, ĉm
′
in,i, c

′
i)i∈[n] for the commitment cm out such that

s⃗i ̸= s⃗′i for some i ∈ [n], outputs a vector z⃗ ∈ Rm+κδz
q such

that [A|B]⃗z = 0 and 0 ≤ ∥z⃗∥ ≤ max(4τ̄ β̄, 2γ̄).

III. GREYHOUND

Greyhound [14] is an interactive PCS for a univariate poly-
nomial f(X) =

�N−1
i=0 fiX

i. The key idea of Greyhound for
efficient proof of univariate polynomial evaluation is folding.
Let N be a degree of polynomial f that can be represented
by N = mn for positive integers m,n. Then, we can write

y = a⃗T0 ·




f0 fm · · · f(n−1)m

f1 fm+1 · · · f(n−1)m+1

...
...

. . .
...

fm−1 f2m−1 · · · fnm−1


 · a⃗1, (1)

where a⃗T0 = [1, x, x2, · · · , xm−1] and a⃗T1 = [1, xm, x2m, · · · ,
x(n−1)m]. Whereas the overall commitment scheme operates
over Rq , the above decomposition is represented over Zq .
Thus, we need to convert elements from Zq to Rq .

In [19], the authors demonstrate how to convert the proof of
polynomial evaluations from Zq to Rq . Suppose that the degree
of a polynomial N is divisible by the ring dimension d. Then

y =
N−1�
i=0

fix
i =

N/d−1�
i=0




d−1�
j=0

fid+jx
j


 · (xd)i.

Suppose that two elements over Rq are defined as

x =

d−1�
j=0

xjXj , fi =
d−1�
j=0

fid+jX
j for i ∈ [N/d− 1]

by conjugation automporphism. Then, as shown in [20], y is
equal to the constant term of the following expression:

y =

N/d−1�
i=0

σ−1(x) · fi · (xd)i.

A. Building Block for Greyhound

At the end of Verify, the verifier needs to check the relation

R := {(P, h⃗, γ̄), z⃗) : Pz⃗ = h⃗ ∧ ∥z⃗∥ ≤ γ̄}

is satisfied where

p :=




D 0 0
0 B 0

a⃗T
1Gb1,n 0 0

c⃗TGb1,n 0 −a⃗T0
0 c⃗⊗Gb1,n −A



, h⃗ :=




v⃗
cm out

σ−1(x)
−1 · y

0
0



,

γ̄ :=
�

b21(κ+ 1)δ1nd+ (nτb0)2δ0md and z⃗ :=




ˆ⃗w
ĉm in

s⃗


 .

To prove knowledge of a short vector z⃗ satisfying the
relation R, Greyhound employs the LaBRADOR proof sys-
tem [18]. For the detailed construction of LaBRADOR, we
refer the reader to [18].

B. Construction of Greyhound

Before presenting the detailed construction of Greyhound,
we introduce its parameters in Table I.

Table I
PARAMETERS OF GREYHOUND

Notation Description
q prime modulus
N number of coefficients
d ring dimension

m,n folding parameter
κ height of matrices A,B,D

b0, b1 decomposition base
δ0, δ1 δ0 = ⌈logb0 q⌉, δ1 = ⌈logb1 q⌉
τ ℓ1-norm of a challenge
γ̄ ℓ2-norm of z⃗
β̄ ℓ2-norm bound of witness
C challenge space

Now, we describe the details of Greyhound.
- Setup(1λ) → pp

1. A
$← Rκ×δ0m

q

2. B
$← Rκ×κδ1n

q

3. D
$← Rκ×δ1n

q

4. return pp := (A,B,D)

- Commit  (pp, f ∈ Z<N
q [X]) → (cm , st)

1. f(X) :=
�N−1

i=0 fiXi

2. for i = 0, 1, ..., N/d− 1 :
3. fi :=

�d−1
j=0 fid+jX

j ∈ Rq

4. for i = 0, ..., n− 1 :
5. f⃗Ti := (fim, ..., f(i+1)m−1) ∈ Rm

q

6. s⃗i := G−1
b0,m

(⃗fi)
7. cm in,i := As⃗i
8. ĉm in,i := G−1

b1,κ
(cm in,i)

9. ĉm in := (ĉm in,i)i∈[n]

10. cm out := Bĉm in

11. st := (⃗si, ĉm in,i)i∈[n]

12. return (cm out, st)
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- O pen(pp, cm , f, st, (ci)i∈[n]) → 0/1

1. f(X) :=
�N−1

i=0 fiXi

2. for i = 0, 1, ..., N/d− 1 :
3. fi :=

�d−1
j=0 fid+jX

j ∈ Rq

4. for i = 0, ..., n− 1 :
5. f⃗Ti := (fim, ..., f(i+1)m−1) ∈ Rm

q

6. if Gb0,ms⃗i ̸= f⃗i ∨As⃗i ̸= Gb1,κcm in,i :
7. return 0
8. if ∥ci · s⃗i∥ > β̄ ∨ ∥ci∥1 > τ̄ ∨ ci /∈ R×

q :
9. return 0

10. cm in := (cm in,i)i∈[n]

11. if ∥cm in∥ > γ̄ ∨Bcm in ̸= cm :
12. return 0
13. return 1

- Verify(pp, cm , x, y; (f, st))

1. f(X) :=
�N−1

i=0 fiXi

2. x =
�d−1

j=0 x
jXj

3. a⃗T0 = [1, xd, x2d, ..., x(m−1)d]Gb0,m

4. a⃗T1 = [1, xmd, x2md, ..., x(n−1)md]
5. P computes:
6. for i = 0, 1, ..., N/d− 1 :
7. fi :=

�d−1
j=0 fid+jX

j ∈ Rq

8. y :=
�N/d−1

i=0 σ−1(x) · fi · (xd)i

9. w⃗T := a⃗T0 [⃗s0| · · · |⃗sn−1]
10. ˆ⃗w := G−1

b1,n
(w⃗)

11. v⃗ := D ˆ⃗w
12. P → V : (y, v⃗)
13. V → P : c⃗ ∈ Cn

14. P computes s⃗ := [⃗s0| · · · |⃗sn−1 ]⃗c.
15. P and V define the instance-witness pair as de-

scribed in Section III-A.
16. V checks whether ct(y) ?

= y.
17. P and V execute LaBRADOR to prove (x,w) ∈ R.

Theorem III.1. Greyhound satisfies evaluation completeness,
weak binding and knowledge soundness under the Module-SIS
assumption.

Proof. Greyhound inherently satisfies evaluation complete-
ness, and Lemma II.1 ensures weak binding. For knowledge
soundness, we modify the evaluation protocol so that the
prover directly outputs z. Then, there exists an extractor that
obtains a valid witness with soundness error n/|C|. The extrac-
tor either finds a short solution to [B|D] or recovers st together
with (ci)i∈[n] within the prescribed norm bounds. From these,
we reconstruct fi = Gb0,ms⃗i and extract f ∈ Z<N

q [X] such
that f(x) = y.

IV. HyperWolf 

HyperWolf   [15] is an interactive PCS for univariate and
multilinear polynomials with a lattice assumption. The key
idea is similar to Greyhound, but the difference is a dimension
and a target polynomial. HyperWolf   uses a generalized tech-
nique to evaluate both univariate and multilinear polynomials
by k-dimensional hypercybe.

Let N be the number of coefficients in a polyno-
mial f . HyperWolf   represents polynomial evaluation into
a uk−1 × · · ·u0 hypercube where N =

�k−1
i=0 ui. In the

multilinear case, let ℓ denote the number of evaluation
points and we then define N = 2ℓ. Consequently, un-
like Greyhound, we need k-evaluation vectors a⃗0, ..., a⃗k−1

where |ai| = ui for i ∈ [k]. For a univariate poly-
nomial f(X) :=

�N−1
i=0 fiX

i, we define the auxiliary
vectors a⃗i = (1, x

∏i−1
j=0 uj , x2

∏i−1
j=0 uj , ..., x(ui−1)

∏i−1
j=0 uj ).

For a multivariate polynomial f(X0, ..., Xℓ−1) := f0 +
f1X0 + f2X1 + · · · + fN−1X0X1, ..., Xℓ−1, we define a⃗i =�∑i−1

k=0 log uk

j=
∑i

k=0 log uk−1
(1, xj), and thus we have

�0
i=k−1 a⃗i = x⃗.

HyperWolf   optimizes the evaluation process introduced in
[12]. This process applies to both univariate and multilinear
polynomial evaluations, and can be expressed uniformly as

y =




f0 f1 · · · fu0−1

fu0 fu0+1 · · · f2u0−1

...
...

. . .
...

f(u1−1)u0
f(u1−1)u0+1 · · · fu1u0−1


 · a⃗0 · a⃗1. (2)

The difference from Greyhound lies in the order of the
coefficients: in Eq. (1), the coefficients of N are arranged by
column, whereas in Eq. (2), they are arranged by row. By
Eq. (2), we can define a generalized evaluation process for
k-dimensional setting as

y = (F(· · · (F(F([F ]) · a⃗0) · a⃗1) · a⃗2) · · · ) · a⃗k−1. (3)

Here, [F ] denotes a k-dimensional hypercube of size uk−1 ×
uk−2 · · · × u0. For each i ∈ [k], the function F maps a (k −
i)-dimensional hypercube of size uk−1 × uk−2 · · · × ui to a
(k − i − 1)-dimensional hypercube matrix of size (uk−1 ×
· · · × ui+1) × ui, where a hypercube matrix simply refers to
flattening a higher-dimensional hypercube into a 2D matrix,
with (uk−1 · · ·ui+1) rows and ui columns.

A. Building Block for HyperWolf 

At the end of Verify, the verifier needs to check the
following relation is satisfied:

Rk =

�
x = (pp(k), cm

(k)
out,y

(k), (⃗aj)j∈[k]);

w = (s(k), (D(s
(k−1)
i , cm

(k−1)
in,i )

�
.

Here, the function D is a flattening function which maps an
input hypercube to a one-dimensional vector by sequentially
concatenating all its edges.

The prover aims to convince the verifier that it knows a wit-
ness corresponding to the coefficients of a polynomial satisfy-
ing y = f(x). For efficiency, the proof protocol for the relation
Rk in HyperWolf   leverages the Johnson-Lindenstrauss (JL)
lemma together with the sum-check protocol. The JL lemma
says that a random linear projection of the original vector
approximately preserves its ℓ2-norm. By the JL lemma, the
prover just reveals the projected vector instead of the entire
vector to convince the verifier. Below is the modular variant
of the JL lemma.
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Lemma IV.1 (Modular Johnson-Lindenstrauss Variant). Let
q ∈ N, and let D be a distribution on {−1, 0, 1} such that
D(−1) = D(1) = 1/4 and D(0) = 1/2. For every vector
a⃗ ∈ Zn

q with ∥a⃗∥ ≤ b and b ≤ q/125, we have:

Pr
M←D256×n

[∥Ma⃗ mod q∥2 < 30b2] ⪅ 2−128.

Next, the key idea of sum-check protocol lies in the use
of randomness and reduction. In each round r, the verifier
samples a random challenge C⃗(k−r) ∈ Cuk−r−1 and sends it
to the prover. Using this challenge, the prover and the verifier
reduce the relation Rk−r to Rk−r−1, which corresponds
to verifying the evaluation up to the (k − r)-th dimension
described in Eq. (3). Repeating this process for k rounds
allows the verifier to ultimately confirm the correctness of the
computation.

More concretely, Eq. (3) can be represented as an inner
product using conjugation automorphism:

y = ct(y(k)) = ct(⟨fold(k−1), a⃗k−1⟩)

where

fold(k−1) = F(· · · (F(s(k−1))·σ−1(MR(⃗a0)))·a⃗1) · · · )·a⃗k−2.

Here, MR : Znd
q → Rn

q denotes a mapping function. Similarly,
fold(k−1) can be reduced to fold(k−2) from the relation

fold(k−1) = ⟨fold(k−2), a⃗k−2⟩.

Thus, by iterating this process round by round, the prover and
verifier progressively reduce the evaluation problem. We omit
the complete protocol of the proof protocol for proving Rk.

B. Construction of HyperWolf 

Before presenting the detailed construction of HyperWolf  ,
we summarize its parameters in Table II.

Table II
PARAMETERS OF HyperWolf

Notation Description
q prime modulus
N number of coefficients
d ring dimension
u length of auxiliary vectors
k dimension of the coefficient hypercube
κ height of matrices A,B

b0, b1 decomposition base
δ0, δ1 δ0 = ⌈logb0 q⌉, δ1 = ⌈logb1 q⌉
τ norm of a challenge
T operation norm bound of a challenge

β(k−r) norm bound of witness in round r
C challenge space

Now, we describe the details of HyperWolf  . The lengths of
auxiliary vectors are set uniformly as uk−1 = uk−2 = · · · =
u0 = u and we define N = ukd = 2ℓ.

- Setup(1λ) → pp

1. A
$← Rκ×uδ0

q

2. B
$← Rκ×κδ1

q

3. return pp := (A,B)

- Commit  (pp, f ∈ Z<N
q [X] or Zq[X0, X1, ..., Xℓ−1]) →

(cm , st)

1. represent f as f⃗ = (f0, f1, ..., fN−1)
2. for i = 0, 1, ..., uk − 1 :
3. fi :=

∑d−1
j=0 fid+jX

j ∈ Rq

4. f⃗T := (f0, f1, ..., fuk−1) ∈ Ruk

q

5. s⃗ := G−1
b0,uk (⃗f)

6. parse s⃗ as a k-dimensional hypercube s(k) and let
(s

(k−1)
i )i∈[u] be the slices of s(k) along the k-th

dimension.
7. A(k) = 1⃗Tuk−2 ⊗A ∈ Rκ×uk−1b0

q

8. for i = 0, ..., u− 1 :
9. cm in,i := A(k)D(s

(k−1)
i )

10. B(k) = 1⃗Tu ⊗B ∈ Rκ×uκb1
q

11. cm out := B(k)G−1
b1,uκ

((cm in,i)i∈[u])

12. st := (s(k), (D(s
(k−1)
i ), cm in,i)i∈[u])

13. return (cm out, st)

- Open (pp, cm , f, st, (ci)i∈[n]) → 0/1

1. represent f as f⃗ = (f0, f1, ..., fN−1)
2. for i = 0, 1, ..., uk − 1 :
3. fi :=

∑d−1
j=0 fid+jX

j ∈ Rq

4. f⃗T := (f0, f1, ..., fuk−1) ∈ Ruk

q

5. s⃗ := G−1
b0,uk (⃗f)

6. if (D(s
(k−1)
i ))i∈[u] ̸= D(s(k))∨Gb0,uk(D(s(k))) ̸=

f⃗ :
7. return 0
8. for i = 0, ..., u− 1 :
9. if A(k)D(s

(k−1)
i ) ̸= cm in,i ∨

B(k)G−1
b1,uκ

((cm in,i)i∈[u]) ̸= cm out :
10. return 0
11. if ∥ci ·D(s

(k−1)
i )∥ ≥ β̄ ∨ ∥ci∥ ≥ τ̄ ∨ ci /∈ R×

q :
12. return 0
13. return 1

- Verify(pp, cm , x (or x⃗ ∈ Zℓ
q), y; (f, st))

1. if f(X) ∈ Z<N
q [X], for i = 1, ..., k − 1 :

a⃗Ti = (1, xui

, x2ui

, ..., x(u−1)ui

) and a⃗T0 =
(1, x, x2, ..., xud−1)

2. if f(X) ∈ Zq[X0, X1, ..., Xℓ−1], for i = 1, ..., k −
1 : a⃗Ti =

⊗i log u
j=(i+1) log u−1(1, xj) and a⃗T0 =⊗0

j=log u+log d−1(1, xj)
3. a⃗0 ← Gb0,ud(⃗a0)

4. P computes y = ⟨fold(k), a⃗k−1⟩.
5. P and V define the instance-witness pair as de-

scribed in Section IV-A.
6. P and V execute the protocol to prove (x,w) ∈ Rk.
7. V checks whether ct(y) ?

= y.

Theorem IV.2. HyperWolf   satisfies evaluation completeness,
weak binding and knowledge soundness under the Module-SIS
assumption.

Proof. HyperWolf   satisfies evaluation completeness natu-
rally via its construction. For each round r ∈ [k − 1],
given (u + 1) accepting transcripts, one can compute a
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weak opening and verify the inner/outer commitment bind-
ing, norm bound β(k−r), and folded inner product relation
⟨fold(k−r), a⃗k−r−1⟩

?
= y(k) to extract a valid witness wr ∈

Rk−r(xr). The probability that the extracted witness violates
norm bound each round is at most 2−128 + q−d/2 ≤ 2−127.
Therefore, the extractor can extract a valid witness with a
soundness error ϵ = 2−126 and a norm bound

√
128/30.

Also, applying the union bound over (k−1) rounds, the total
knowledge soundness error is bounded by (k−1)u

|C| +2−126(k−
1).

V. COMPARISON

Both Greyhound [14] and HyperWol  f [15] are lattice-
based polynomial commitment schemes constructed under the
Module-SIS assumption, providing post-quantum security and
additive homomorphism with transparent setup. Despite using
the same lattice assumption, their target polynomial classes
and evaluation, and proof techniques differ substantially.

The most notable difference lies in the evaluation tech-
nique. Both PCSs use the folding technique for polynomial
evaluation: Greyhound targets univariate polynomials using
a coefficient matrix, whereas HyperWol  f generalizes to both
univariate and multilinear polynomials via the k-dimensional
hypercube.

Table III
COMPARISON OF GREYHOUND AND HyperWolf

Scheme commit.
size

Proof
size

Prover
Cost

Verifier
Cost

Greyhound O(1) O(log logN) O(N) O(
√
N)

HyperWolf O(1) O(logN) O(N) O(logN)

In terms of complexity, both PCSs achieve a constant
commitment size O(1) and the same asymptotic prover cost
O(N), while differing in the proof size and verifier cost. The
proof size of Greyhound is O(log logN), which is smaller
than HyperWolf’s O(logN), but the difference is not very
significant. In contrast, the verifier cost shows a large gap:
O(logN) for HyperWolf and O(

√
N) for Greyhound, which

is due to the difference in dimensions. The overall comparison
is summarized in Table III.

VI. CONCLUSION

In this survey, we review two recent lattice-based PCSs,
Greyhound and HyperWol  f, where both are based on Module-
SIS assumption but use a different technique. While the
Greyhound achieves a smaller proof size via a coefficient
matrix and LaBRADOR proofs for a univariate polynomial,
HyperWol  fachieves a lower verifier cost via the k-dimensional
coefficient hypercube for both univariate and multilinear poly-
nomials.

There are several directions for future work that we would
like to pursue. Previous schemes have mainly focused on
univariate or multilinear polynomials. A natural next step
is to construct a lattice-based PCS that supports general
multivariate polynomials. In addition, we aim to investigate
whether alternative lattice assumptions beyond Module-SIS

can lead to more efficient or versatile PCSs. Finally, we are in-
terested in designing a fully homomorphic PCS, which would
significantly broaden the applicability of PCS in cryptographic
protocols.
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