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Abstract—Adaptive Bitrate (ABR) streaming is the de facto
mechanism for delivering video over heterogeneous and time-
varying wireless networks. However, volatile bandwidth, inter-
ference, mobility, and resource contention complicate bitrate
selection and buffer control, often degrading users’ Quality of Ex-
perience (QoE). Traditional rule-based ABR algorithms struggle
to generalize across diverse conditions. Recent work demonstrates
that Deep Reinforcement Learning (DRL) can jointly reason over
network dynamics and player status to optimize QoE, including
quality, rebuffering, smoothness, and latency. This paper surveys
DRL-based ABR advances from 2022 to 2025 in wireless contexts
and emphasizes the role of open and reproducible research using
ns-3 for network simulation and FFmpeg for video processing
and objective quality assessment (e.g., PSNR, SSIM, VMAF).
We first formalize the DRL problem for ABR (state, action, and
reward design), then discuss how ns-3 models cellular and Wi-Fi
environments and how FFmpeg enables practical bitrate ladders,
decoding, trace generation, and automated quality evaluation. We
synthesize findings across recent works on access-point-assisted
ABR, meta-RL bitrate guidance, cross-layer optimization for
real-time communication, fairness-aware multiuser bandwidth
allocation at the mobile edge, and throughput prediction for
ABR. We highlight reported gains, modeling choices, and, criti-
cally, open-source availability where indicated. We conclude by
outlining open challenges—generalization, QoE modeling, and
real-world deployment—and advocating for open-source bench-
marks, datasets, and truly end-to-end ns-3+FFmpeg pipelines to
accelerate impactful and reproducible research in DRL-driven
ABR for wireless video streaming.

Index Terms—Adaptive Bitrate Streaming, Deep Reinforce-
ment Learning, ns-3, FFmpeg, Quality of Experience, Wireless
Communication

I. INTRODUCTION

Video traffic dominates mobile network usage and continues
to surge in bitrate and interactivity requirements. Delivering
high Quality of Experience (QoE) in fluctuating wireless
environments is challenging due to fast timescale capacity
variations, congestion, contention, handovers, and device het-
erogeneity. Adaptive Bitrate (ABR) streaming mitigates these
variations by selecting per-segment quality based on observed
network and player conditions.

While classical heuristic ABR approaches (e.g., throughput-
or buffer-based rules) are simple and widely deployed, they
often fail under previously unseen conditions and cannot
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jointly optimize multiple QoE objectives. Recent advances
indicate that Deep Reinforcement Learning (DRL) can learn
robust bitrate control policies by observing throughput, buffer,
client status, and content features to directly optimize QoE
[1]-[3]. Wireless-specific constraints such as high-density Wi-
Fi, cellular mobility, and shared spectrum, further motivate
learning-based control integrated with the network and edge
[4], [5].

This paper surveys DRL-based ABR advances from 2022
to 2025 with an emphasis on open and reproducible research
using ns-3 for network simulation and FFmpeg for video
processing. We: (i) formalize the DRL problem for ABR;
(i1) explain how ns-3 and FFmpeg underpin practical, repro-
ducible experimentation; and (iii) synthesize findings from
recent literature covering access-point-assisted ABR, meta-RL
server guidance, cross-layer control, fairness-aware multiuser
allocation, and throughput prediction, with attention to code
availability.

The rest of the paper is organized as follows. Section II
introduces DRL for ABR. Section III motivates open-source
simulation with ns-3 and FFmpeg. Section IV reviews recent
advances. Section V discusses challenges and future directions.
Section VI concludes.

II. RELATED WORK

Several recent works apply machine learning and DRL to
ABR control, and surveys of learning-based adaptive stream-
ing continue to evolve [6]. In addition to bitrate selection,
complementary lines of work (e.g., throughput prediction and
edge-assisted scheduling) provide inputs or constraints to ABR
controllers [5], [7], [8].

Meta reinforcement learning and on-policy/off-policy DRL
have been used to guide bitrate choices in various rein-
forcement learning approaches. Server-side meta-RL guidance
(e.g., Ahaggar) leverages Common Media Client/Server Data
(CMCD/SD) to provide bitrate hints to heterogeneous clients
[9], [10]. Value-based methods such as Deep Q-Network
(DQN) [11] and its variants improve decision stability and
sample efficiency for ABR [1], [2]. Actor-critic methods, par-
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ticularly soft actor-critic (SAC), are attractive when optimizing
multi-objective QoE or fairness [4].

In the context of 5G and edge computing solutions, edge-
assisted strategies coordinate bandwidth allocation and ABR,
either through prediction-guided prefetching at the mobile
edge computing (MEC) [12] or joint optimization of QoE and
fairness across users [4], [5]. Related quality-aware streaming
and scheduling in device-to-device and wireless caching sys-
tems have also been explored [13], [14]. Cross-layer RL aligns
transport and codec control for real-time video communication
(RTVC), reducing stalls and delay [15]. Infrastructure-assisted
vehicular streaming over mmWave further leverages DRL for
proactive delivery and bitrate decisions [16].

When comparing existing approaches and identifying gaps,
throughput prediction methods target cellular networks [7],
[8], [17], yet production deployment faces issues such as data
sampling, distribution shift, and on-device constraints. Many
works do not publicly release complete code and simulation
scripts, limiting reproducibility and fair comparison.

III. DEEP REINFORCEMENT LEARNING FOR ABR

We outline the DRL formulation commonly used in ABR.

A. State Space

Typical observations include: recent measured/estimated
throughput; download time of prior segments; player buffer
occupancy and its trend; history of selected bitrates; rebuffer-
ing events; viewport/device resolution; and content features
(e.g., complexity proxies) [1]-[3], [9]. Wireless-aware con-
texts further add PHY/MAC indicators (e.g., RSSI/SINR,
modulation/coding), number of contending clients, and AP
scheduling hints [3]. Specifically, these include signal-to-noise
ratio (SNR) for channel quality assessment, airtime utilization
(AU) representing the percentage of time the wireless channel
is busy, and modulation and coding scheme (MCS) index that
determines transmission parameters. Some works treat ABR
as a partially observable Markov decision process (POMDP)
due to limited observability (e.g., per-client local views in
multiuser settings) [9].

B. Action Space

The agent typically selects the next segment’s bitrate (from
the available ladder). Extended actions include adjusting buffer
targets, switching aggressiveness, or requesting server-side
bitrate guidance where supported [9], [15].

C. Reward Function

QoE-oriented rewards trade off: (i) delivered quality (via
bitrate or perceptual metrics like VMAF/PSNR [18]); (ii) re-
buffering penalties; (iii) smoothness penalties for large quality
steps; and (iv) latency, especially for live/RTVC settings [1],
[2], [15]. Weights reflect service goals. Multiuser settings may
incorporate fairness (e.g., Jain’s index) [4].

D. Algorithms

Recent ABR works span value-based methods, actor—critic
policy-gradient approaches, and meta-RL guidance. On the
value-based side, DQN and the DQNReg [19] variant learn
discrete bitrate choices from QoE-shaped rewards [2], and,
similarly, AP-assisted Wi-DASH employs a DQN model to ex-
ploit global network status for server-side bitrate decisions [3].
In contrast, actor—critic methods optimize multi-objective QoE
and handle continuous controls: Palette uses asynchronous
advantage actor-critic (A3C) [20] to couple transport and
encoder parameters for real-time communication [15], and
MEC-side bandwidth allocation leverages SAC to improve
both QoE and fairness across users [4]. Meanwhile, meta-RL
shifts learning to the server: Ahaggar provides bitrate guid-
ance using an advantage Actor-Critic (A2C) backbone with
distributed proximal policy optimization (DPPO) [21], [22]
updates and Model Agnostic Meta-Learning (MAML)-style
[23] fast adaptation, interoperating with heterogeneous clients
via CMCD/SD [9], [10]. Additionally, Pensieve-inspired DRL
remains a strong baseline in SG/UHD settings [24], and long
short-term memory network (LSTM)-based [25] DRL vari-
ants explicitly moderate quality switches [1]. Overall, value-
based methods are simple and sample-efficient, actor—critic
approaches better navigate QoE trade-offs and continuous
actions, and meta-RL offloads computation and generalization
to the server; moreover, cross-layer agents reduce stalls and
latency by jointly tuning transport and compression.

E. State-Action-Reward Design Patterns

Table I presents concrete examples of how the theoretical
DRL framework translates into practical implementations,
comparing state space, action space, and reward function de-
signs across different algorithmic approaches. The table shows
diverse state representations (from basic network metrics to
wireless-aware indicators like SNR/AU/MCS), action spaces
(bitrate selection to cross-layer controls), and reward functions
(balancing QoE objectives through perceptual metrics or oper-
ational constraints). This systematic analysis helps researchers
understand the trade-offs between different design choices and
provides a foundation for developing new DRL-based ABR
algorithms.

It is worth noting that several works in Table II are
excluded as they employ non-DRL approaches (throughput
prediction, supervised caching/prefetch) rather than RL control
algorithms.

IV. THE ROLE OF OPEN-SOURCE SIMULATION WITH NS-3
AND FFMPEG

Simulation enables safe, controllable, and repeatable evalu-
ation of ABR under diverse wireless conditions.

A. ns-3 for Network Simulation

ns-3 offers detailed models for Wi-Fi and cellular (LTE/NR)
stacks, mobility, interference, and application traffic, allow-
ing researchers to configure challenging scenarios (variable
RSSI/SINR, handovers, multi-AP contention, user mobility,
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TABLE I
DRL FORMULATIONS BY PAPER: STATE/OBSERVATION, ACTION, AND REWARD.

Paper Algorithm State Action Reward

Xiao et al. [4] SAC MEC Buffer T7PUT | bits, bitrate, multiuser Allocate bandwidth Y log(QoE) + fairness

Bentaleb et al. [10] Meta-RL Throughput, buffer, quality, device, content Select bitrate VMAF + rebuffer + switch penalties
Wu et al. [3] AP-DQN SNR/AU/MCS, throughput, buffer, prefs Select bitrate QoE + rebuffer/switch penalties

Li et al. [15] Cross-layer RL  RTT, stalling, bandwidth, complexity CRF + pacing Quality + low stalling/RTT

Hafez et al. [2] DQNReg Bitrate, throughput, buffer, time, available Select bitrate QOE - rebuffer - switch penalties
Bentaleb et al. [9] Meta-RL Throughput, buffer, resolution, content, POMDP  Select bitrate VMAF + rebuffer + switch penalties
Arunruangsirilert et al. [24]  Pensieve-5G Throughput, buffer, chunk sizes, SG/UHD Select bitrate QoE: quality + rebuffer + smoothness
Souane et al. [1] DRL ABR Quality, bandwidth, buffer, classes Select quality f(g,rb, Aq) + penalties

and background traffic). ABR experiments typically emulate
HTTP-based segment downloads over TCP/QUIC, capturing
segment-level throughput and latency consistent with player
behavior. Prior work used ns-3-based platforms to explore
multiuser sharing and rate control effects for video streaming
[26]. Beyond platform studies, ns-3/mmWave is also used
to synthesize 5G streaming traces for throughput-prediction
pipelines; for example, Sen et al. generate 5G mmWave traces
with DASH traffic in ns-3/mmWave to evaluate their predictor
and downstream ABR QoE [17].

B. FFmpeg for Video Processing

FFmpeg is widely used to prepare and analyze video
content for ABR: encode and decode a bitrate ladder across
resolutions/bitrates with consistent GOP structure; segment
into HLS/DASH chunks; and optionally generate per-segment
size/bitrate traces used to emulate downloads in ns-3. In
addition, FFmpeg can compute objective quality metrics such
as PSNR, SSIM, and VMAF either inline through built-in
filters or offline, enabling both evaluation and reward shaping.

C. End-to-End Pipeline Architecture

An open-source workflow integrates: (i) FFmpeg to pro-
duce representations, perform decoding checks, and compute
objective quality metrics (e.g., PSNR, SSIM, VMAF) in ad-
dition to emitting segment metadata; (ii) a trace-driven ABR
client generating segment requests; and (iii) ns-3 scenarios
for Wi-Fi/cellular with realistic channel and mobility models.
Together, ns-3 and FFmpeg form a truly end-to-end simulation
and evaluation pipeline. We advocate releasing configuration
files, content preparation scripts, and ABR agent code for
community reuse.

D. ns-3 and Gymnasium Integration

A practical way to make the simulation loop RL-ready is to
expose the ns-3 experiment as an environment compliant with
the OpenAl Gym/Gymnasium API. The ns3-gym framework
maps simulator state and control to observation/action spaces
and implements the standard reset/step interaction, letting
an external agent train and evaluate over ns-3 with mini-
mal glue code [27]. Adopting the modern Gymnasium inter-
face [28] ensures consistent semantics (termination/truncation,
seeding, vectorized rollouts) and interoperability with com-
mon RL libraries. For ABR, the wrapper typically publishes
observations (e.g., recent throughput, round-trip time (RTT),
buffer level, selected bitrate history, optional content features)

and exposes actions as bitrate (and optionally buffer target or
switching aggressiveness); the reward encodes QoE (quality,
rebuffering, smoothness, latency). This integration decouples
environment mechanics from learning, so researchers can
focus solely on designing and comparing optimization algo-
rithms while reusing the same ns-3 scenarios, content, logging,
and evaluation harness.

E. Ready-to-Use Datasets and Content Suites

Ready-to-use datasets substantially accelerate research by
eliminating the heavy upfront effort of content preparation
and enabling fair, apples-to-apples comparisons across studies.
The multi-profile UHD DASH datasets and scripts by Quinlan
and Sreenan provide 4K AVC/HEVC content, bitrate ladders,
and generation tooling suitable for both real-time testbeds and
trace-based simulation (including ns-3) [29], and the UVG
dataset offers diverse 4K sequences with varied motion and
texture characteristics that are valuable for codec and ABR
analysis [30]. Because video scene types (e.g., static/low-
motion, animation, interview/talking-head, action/sports, na-
ture) materially affect segment sizes, achievable bitrate, and
QoE under ABR/DRL optimization, benchmarking suites
should deliberately span multiple scene categories to avoid
overfitting to a single content type. Their availability reduces
barrier to entry for new ABR researchers, standardizes evalua-
tion across resolutions/bitrates, and supports reproducible QoE
assessment. When coupled with ns-3 scenarios and FFmpeg-
based traces, such datasets allow rapid ablation studies, robust
hyperparameter sweeps, and cross-paper benchmarking with-
out confounding differences in content encoding pipelines.

V. REVIEW OF RECENT ADVANCES

We synthesize common trends and key differentiators across
recent work that targets ABR for wireless video. Most papers
cast bitrate control or its enablers as a learning problem, but
they differ by control location (client vs. AP/edge/server),
action granularity (bitrate vs. cross-layer knobs vs. bandwidth
allocation), and evaluation methodology (trace-driven, ns-3,
testbed, field).

A. Commonalities and Differences

Recent approaches exhibit diverse learning paradigms and
control scopes. Client-side DRL for bitrate selection remains
a central theme [1], [2], complemented by server-side meta-
RL that provides guidance to heterogeneous clients [9], [10].
Some works expand the control scope through cross-layer
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RL, extending actions beyond bitrate to include encoder and
transport parameters [15], while edge-side RL addresses the
complexities of multiuser resource allocation and fairness
[4]. The state representations adapt accordingly: while most
models use throughput history, buffer level, and bitrate history,
wireless-aware solutions incorporate PHY/MAC indicators or
AP-side congestion signals [3]. Similarly, multiuser and edge
schemes add per-user buffer, demand, and fairness signals
[4], and server-guidance systems leverage CMCD/CMCD-SD
telemetry and content descriptors [10].

The objectives and evaluation methodologies also vary.
QoE is commonly encoded as a reward function balancing
delivered quality against penalties for rebuffering and quality
switching, with live settings adding latency as a key factor
[15]. In multiuser scenarios, fairness is often incorporated,
for instance, through Jain’s index [4]. Evaluation practices are
equally diverse, ranging from trace-driven simulations to more
complex ns-3 environments and real-world systems. Through-
put prediction studies, for example, often target cellular traces
and consider on-device constraints [7], [8], [17], while other
works explore complementary techniques like edge caching
and prefetching to support ABR control [5]. Furthermore,
adaptations of established frameworks like Pensieve for 5G
and UHD content highlight the importance of using practical
QoE metrics [24], and survey papers play a crucial role in
consolidating these varied taxonomies and toolchains [6].

B. Representative Works by Theme

Representative works span AP/edge-assisted ABR, meta-RL
guidance, client-side DRL, cross-layer RL, throughput predic-
tion, caching/prefetch, and 5G/UHD adaptations. AP-assisted
DRL for dense Wi-Fi integrates network indicators with player
status to stabilize bitrate, while MEC-side SAC allocates band-
width to improve QoE and fairness under multiuser contention
[3], [4]. Server-side meta-RL (Ahaggar) issues bitrate hints
via CMCD/SD, enabling rapid generalization across devices
and ABR clients [9], [10]. On the client, value-based (DQN)
and actor-critic variants learn bitrate policies with QoE-shaped
rewards, and constraining quality steps improves smoothness
[1], [2]. Cross-layer control for real-time video communication
jointly tunes encoder compression and transport pacing to
reduce stalls and delay [15]. Throughput-prediction enablers
— including multistage context-aware models and device-
based (including federated) predictors — help stabilize ABR
in cellular networks [7], [8], [17]. In particular, Sen et al. [17]
develop a collaborative multi-device, multi-network predictor
(FedPut) and report QoE and its components (average bitrate,
bitrate variation, rebuffering) as downstream outcomes when
used with ABR; they do not directly optimize QoE, hence
only the Throughput column is checked in Table II. At the
edge, supervised prefetching of likely next representations
increases cache hits and reduces backhaul [5]. Practical adap-
tations for SG/UHD (e.g., Pensieve-5G) report QoE gains
in 5G Standalone (SA) and 5G New Radio (NR)-NR Dual
Connectivity (NR-DC) networks [24]. Finally, ns-3 platforms
facilitate controlled evaluation [17], [26].

C. Systematic Comparison of Recent Works

Building on the general trends identified above, we now
provide a systematic comparison of recent works across mul-
tiple dimensions. The Table II and analysis offer a structured
evaluation of how different approaches address key aspects
of ABR optimization, from throughput prediction to fairness
considerations.

The “Throughput” column in Table II indicates whether a
paper explicitly builds and evaluates a network throughput
predictor. Entries marked with v include such a predictor;
entries marked with x do not. Clarifications for some X
entries: Arunruangsirilert et al. [24] train and test Pensieve-
5G using measured 5G throughput traces; the ABR algorithm
is RL-based and does not contain a predictor. Bentaleb et
al. [9] (Ahaggar) consume measured throughput as input for
guidance without learning a throughput model. Behravesh et
al. [5] predict segment bitrates for MEC prefetching (content-
side), not network throughput.

Beyond throughput prediction, the added columns highlight
which QoE/Quality of Service (QoS) dimensions each work
explicitly optimizes or evaluates. In terms of quality, several
papers compute or target perceptual measures: Bentaleb et al.
[9], [10] report VMAF, and Li et al. [15] improves perceived
quality by jointly tuning encoder parameters (e.g., CRF/QP)
with transport control. Xiao et al. [4] incorporate bitrate level
into a QoE model that drives bandwidth allocation, while
Nolan et al. [8] use bitrate utility as part of a QoE formulation
when assessing prediction impact. Raca et al. [7] optimize
device-based throughput prediction and report video bitrate,
quality switches, and stall metrics as downstream outcomes
when the predictor is used by an ABR client; they do not
directly optimize QoE, hence only the Throughput column is
checked in Table II. Similarly, Sen et al. [17] evaluate QoE
and components (average bitrate, bitrate variation, rebuffering)
when their FedPut predictor drives ABR, but do not optimize
QoE directly; thus only the Throughput column is checked for
this paper.

Rebuffering and stall avoidance are central across DRL-
based ABR works: Hafez et al. [2] and Souane et al. [1]
include explicit penalties for interruptions, Bentaleb et al. [10]
measure total rebuffering duration, and Pensieve-5G [24] tar-
gets smoother UHD playback under 5G variability. AP/edge-
assisted solutions such as Wu et al. [3] also account for stall
sensitivity in multi-client settings.

Smoothness (quality switching) is explicitly addressed in
Hafez et al. [2] and Souane et al. [1] via penalties on large
quality steps, and appears as a switching penalty in Nolan
et al. [8] when quantifying QoE improvements from better
prediction.

Latency is emphasized in real-time and edge-caching con-
texts. Li et al. [15] directly minimizes interaction delay (RTT)
alongside stall rate in RTVC scenarios, and Behravesh et al.
[5] reduce segment access delay through MEC prefetching
and caching, improving user-perceived responsiveness and
backhaul efficiency.
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TABLE II
COMPARISON OF RECENT WORKS: PAPER, SETTING, APPROACH, QUALITY (BITRATE/PERCEPTUAL), REBUFFERING, SMOOTHNESS (QUALITY
SWITCHES), LATENCY/RTT, AND MULTIUSER FAIRNESS.

Paper Year  Setting Approach Throughput Quality Rebuffer Smooth. Latency Fairness
Xiao et al. [4] 2025  MEC multiuser SAC allocation X v v v
Bentaleb et al. [10] 2024  Mixed ABR ecosystems ~ DPPO + MAML X v v

Nolan et al. [8] 2024  Cellular Multistage DL predictor (non-DRL) v v v v

Wu et al. [3] 2024  Dense Wi-Fi AP-assisted DRL X v v v

Raca et al. [7] 2024  Smartphones On-device prediction (non-DRL) v

Li et al. [15] 2024 RTVC Cross-layer RL (Palette) X v v v

Sen et al. [17] 2023  Edge, multi-device Federated prediction (FedPut) (non-DRL) v

Hafez et al. [2] 2023  Wi-Fi/5G traces DQNReg (value-based) X v v v

Bentaleb et al. [9] 2023  Heterogeneous clients Meta-RL guidance (Ahaggar) X v v

Arunruangsirilert et al. [24] 2023  5G SA/NR-DC, UHD Pensieve-5G X v v

Souane et al. [1] 2023  Wi-Fi/cellular traces DRL for ABR X v v v

Behravesh et al. [5] 2022 MEC caching Supervised prefetch (non-DRL) X v

Finally, fairness is explicitly modeled by Xiao et al. [4], who
maximize the sum of log(QoE) across users and couple ABR
selection with resource allocation to maintain stable buffers
and equitable QoE in multiuser MEC deployments. For Li et
al. [15], fairness is reported (Jain index) as a measurement
in multi-flow experiments rather than as a direct optimization
target; thus the Fairness column remains unchecked.

As a brief conclusion to this section, recent advances
indicate that learning-based ABR now spans client, AP/edge,
and server: client-side DRL improves QoE and is strengthened
by network-side cues and server guidance; explicitly mod-
eling fairness and latency alongside quality and rebuffering
yields policies better suited to multiuser and real-time video
communication; yet methodological rigor remains uneven,
with few works releasing end-to-end artifacts (ns-3 scenarios,
content pipelines, and agents), limiting reproducibility and
comparability—underscoring calls for open benchmarks and
shared tooling [6], [17], [26].

VI. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

Several key challenges and promising research directions
remain for DRL-based ABR in wireless networks. A primary
concern is the generalization and robustness of learned poli-
cies; those trained on specific traces or environments may
not perform well on unseen networks, devices, or content.
To address this, domain randomization, meta-learning, and
uncertainty-aware decision-making are promising avenues for
future work. Another critical area is improving QoE mod-
eling and personalization. Since QoE depends on perceptual
quality, context, and individual user preferences, incorporating
advanced perceptual metrics (e.g., VMAF) and personalized
utility models can better align reward functions with the actual
human experience.

Furthermore, wireless ABR is an inherently multiuser prob-
lem, making coordination and fairness essential. While joint
bandwidth allocation and ABR (e.g., SAC-based allocation)
show promise, developing scalable and fair coordination mech-
anisms for heterogeneous clients remains an open challenge
[4]. Practical real-world deployment also presents significant
hurdles. Deployments must confront measurement noise, dis-
tribution shifts, and limited computational resources on client
devices. Lightweight inference models, server-side guidance,

and continual learning on-device or at the edge are practical
strategies to overcome these limitations [7], [10].

Finally, to accelerate progress and ensure fair, repro-
ducible comparisons, the community must embrace open-
source benchmarks and pipelines. We urge researchers to
release end-to-end ns-3 scenarios (for both Wi-Fi and cellular),
FFmpeg bitrate ladders with segment metadata, standardized
content sets, and ABR agents with documented training and
evaluation scripts. The availability of ready-to-use content
suites, such as the UHD DASH datasets [29], helps make
results more comparable and reproducible by fixing the content
distribution and bitrate ladder across studies. Establishing
common benchmarks is crucial for accelerating progress and
ensuring the validity of research findings.

VII. CONCLUSION

DRL presents a powerful framework for ABR control in
challenging wireless environments, enabling policies that opti-
mize QoE across quality, smoothness, rebuffering, and latency.
Recent advances span AP-assisted control, meta-RL guidance,
cross-layer optimization, fairness-aware multiuser allocation,
and throughput prediction. Open-source simulation with ns-3
and FFmpeg is critical to reproducibility and impact. We call
for community efforts to provide standardized, open pipelines
and datasets so that future DRL-based ABR research can be
compared rigorously and deployed confidently.
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