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Abstract—AI technologies are expected to be fully integrated 

into mobile communication systems in the 6G era, especially 

bringing significant advances in the Radio Access Network 

(RAN) domain. In particular, extensive research has been 

conducted to apply AI to the air interface in order to enhance 

the performance of mobile communication, and AI-based 

pilotless communication has been proposed as a promising use 

case. In this paper, a proof-of-concept (PoC) system for AI-

based pilotless communication is developed, and experimental 

results via channel emulation and over-the-air (OTA) testing in 

practical indoor environments are presented. In all tested 

conditions and environments, the proposed method was 

observed to improve throughput performance. Furthermore, 

the channel emulator-based test results show that the proposed 

method can maintain robustness even under channel conditions 

not considered during training and can be more effective in 

rapidly varying channel conditions. The proposed method 

improves throughput performance by 13–18% in the practical 

indoor environments. 
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I. INTRODUCTION 

While large language models (LLMs) have fueled 
advances in generative AI, there is now a growing shift toward 
physical AI, which aims to solve real-world problems and 
support decision-making in many industries [1]. This shift 
signifies not only advances in language understanding, but 
also a broader transformation in how AI technologies are 
shaping and optimizing industrial processes, infrastructure, 
and services. In the mobile communication industry, it is 
expected that AI technologies will be fully integrated into 
mobile communication systems in the 6G era [2], thereby 
driving considerable advancements particularly in the Radio 
Access Network (RAN) domain, which accounts for the 
majority of mobile network infrastructure investments [3, 4]. 

Especially, a concept called AI-native air interface has 
been proposed [5] and many studies have been conducted to 
apply AI to the air interface in order to improve the 
performance of the mobile network.  In 3GPP, the use cases 
of channel state information (CSI) feedback enhancement, 
beam management, and positioning accuracy enhancement 
were discussed in Release 19 [6]. In addition, an AI-based 
orthogonal frequency-division multiplexing (OFDM) receiver 
to handle waveforms distorted by power amplifier non-
linearity was proposed in [7], and an AI-based beamforming 

method was proposed in [8] to predict downlink channel states 
from uplink estimates, thereby enhancing beamforming 
performance. Furthermore, [9] proposed another AI-based 
OFDM receiver which can reduce the number of pilot symbols, 
and an AI-based pilotless communication method was 
proposed in [10] as an extension of [9]. 

In this paper, we develop a proof-of-concept (PoC) system 
for [10] and present experimental results obtained through 
channel emulation and over-the-air (OTA) testing in practical 
indoor environments. The results demonstrate that the 
proposed method enhances throughput performance by more 
than 13% across all tested conditions and environments, and 
is shown to be more effective under rapidly varying channel 
conditions. 

II. AI-BASED PILOTLESS COMMUNICATION 

Fig. 1 shows the overall block diagram of the AI-based 
pilotless communication system. In the transmitter, AI is 
applied to the modulation processing; the data is modulated 
using an irregular learned constellation vector, jointly pre-
trained with the receiver output [10]. On the receiver side, the 
conventional channel estimation, equalization, and symbol de-
mapping processes are replaced by an AI model based on a 
residual network (ResNet)-type convolutional neural network 
(CNN) [9]. ResNets have previously been employed for image 
segmentation tasks, where the neural network is required to 
classify each pixel in an image. This approach is analogous to 
OFDM reception, in which the receiver must classify each 
resource element according to the symbol it represents. In this 
context, a two-dimensional resource grid spanning the 

 

Fig. 1. Block diagram of AI-based pilotless communication system 
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frequency and time axes can be interpreted as the image. The 
AI model in the receiver processes the frequency-domain data 
obtained by applying the Fourier transform to the received 
signal and outputs the bit-level log-likelihood ratio (LLR) 
values. The AI models at the transmitter and receiver are 
jointly trained in an end-to-end manner to minimize the bit 
error rate (BER) between the original data at the transmitter 
and the finally decoded data at the receiver. While 
conventional communication systems require pilot signals to 
be transmitted separately from data for channel estimation, the 
proposed method enables communication without such pilot 
signals by allowing the AI models at both the transmitter and 
receiver to jointly learn the communication scheme. In the 
considered scenario, this leads to the adoption of an 
asymmetric constellation shape, which the receiver then 
learns to utilize for detecting the data without any pilot 
signals. This improves throughput by utilizing all the 
available resources for data transmission. 

III. EXPERIMENTAL ENVIRONMENTS 

The training of the AI models was conducted offline using 
one million slots of simulated data, randomly generated within 
the parameter ranges specified in Table I. During training, 
Tapped Delay Line (TDL)-A, TDL-B, and TDL-C channel 
models defined in 3GPP TR 38.901 [11] were utilized to 
represent diverse radio propagation environments. After 
training, the receiver AI model was deployed on a GPU server 
for real-time inference. The inference was performed on real 
hardware and radio frequency (RF) channels. Note that there 
is no additional inference in the transmitter since it simply uses 
pre-learned constellations.  

TABLE I.  PARAMETER CONFIGURATION FOR THE TRAINING 

Parameter Configuration 

Channel model 3GPP TDL-A, TDL-B, TDL-C 

Velocity 0~200 km/h 

Delay spread 10~500 ns 

SNR 0~20 dB 

 

A proof-of-concept (PoC) system was developed to 
evaluate the proposed method, the architecture of which is 
illustrated in Fig. 2. As mentioned above, baseband signal 
processing was performed on a GPU server, while a USRP 
X310 software-defined radio (SDR) platform was employed 
for signal transmission and reception. The transmitted signal 
from the USRP was delivered to the receiver either directly 
through a channel emulator or via an actual omnidirectional 
antenna, depending on the experimental configuration. In the 
case of over-the-air (OTA) testing, an amplifier was connected 
to the output of the USRP in order to ensure sufficient transmit 
power. 

Table II summarizes the parameter settings of the PoC 
system. For the experimental evaluation, the 256 Quadrature 
Amplitude Modulation (QAM) Modulation and Coding 
Scheme (MCS) table defined in 3GPP was employed [12]. 
The selected MCS indices, ranging from 5 to 10, correspond 
to 16QAM modulation. In this experiment, the proposed AI-
based pilotless communication method is compared with a 
conventional demodulation reference signal (DM-RS)-based 
method in 5G NR system, where DM-RSs are transmitted in 
2 or 3 OFDM symbols per slot, depending on the tested 

channel condition. In contrast, the proposed method does not 
transmit DM-RS, as there is no explicit channel estimation 
process. In both methods, the first OFDM symbol of each slot 
is reserved and not used for data transmission. Therefore, the 
proposed method utilizes 13 OFDM symbols per slot for data 
transmission, while the conventional method uses 10 or 11 
OFDM symbols depending on the DM-RS configuration. 

TABLE II.  PARAMETER CONFIGURATION FOR THE POC SYSTEM 

Parameter Configuration 

Frequency band 3.7 GHz, 4.6 GHz 

Bandwidth 9 MHz 

Subcarrier spacing 30 kHz 

Num. of subcarriers 300 

MCS index 5~10 (16QAM) 

Num. of DM-RS 2~3 symbols 

 

For the channel emulator-based testing, TDL-A, TDL-B, 
and TDL-C channel models were created with representative 
velocity and delay spread values, as shown in Table III. For 
simplicity, each channel was assigned a numeric identifier, 
and the channel numbers are referenced hereinafter. Note that 
Channels 1 to 3 correspond to conditions within the training 
range, whereas Channel 4 represents a condition outside the 
training range. 

TABLE III.  CHANNEL MODELS ADOPTED FOR CHANNEL EMULATOR-
BASED TESTING 

Number Channel model Parameter configuration 

1 TDL-A 
UE velocity: 3km/h 

Delay spread: 30ns 

2 TDL-B 
UE velocity: 60km/h 

Delay spread: 100ns 

3 TDL-C 
UE velocity: 120km/h 

Delay spread: 300ns 

4 TDL-C 
UE velocity: 300km/h 

Delay spread: 300ns 

 

(a) 

 

(b) 

Fig. 2. PoC system architecture for (a) channel emulator-based testing 
and (b) over-the-air testing. 
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IV. EXPERIMENTAL RESULTS 

In this section, we present the experimental results for 
the proposed method using the PoC system described in 
Section Ⅲ. The tests are classified into two categories: 
channel emulator-based tests to emulate various channel 
conditions, and OTA tests to evaluate whether it performs 
well in real environments.  

A.  Channel emulator-based test 

Fig. 3 shows the block-error-rate (BLER) performances 
of the proposed method over the emulated channels in the 
3.7 GHz and 4.6 GHz bands. The MCS index was set to 7 
for all the tests. For the DM-RS configuration, 2 symbols at 
the 4th and 10th positions in each slot were used for Channel 
1 and Channel 2, while 3 symbols at the 2nd, 6th, and 10th 
positions in each slot were used for Channel 3 and Channel 
4. Experimental results demonstrate that, under relatively 
favorable channel conditions such as Channel 1, the 
proposed method achieves BLER performance comparable 
to that of the conventional method. However, under 
scenarios where the channel conditions change rapidly, the 
results show that the conventional method, which performs 
channel estimation using DM-RS, suffers significant 
degradation in BLER performance. In contrast, it is 
observed that the proposed method, which is trained in a 
data-driven manner, maintains consistently good BLER 
performance across various channel conditions. Moreover, 
the proposed method continues to achieve good BLER 
performance on Channel 4, which is outside the range of the 
training environments, indicating that the proposed method 
can remain robust even in channel conditions that deviate 
from those seen during training.  

Fig. 4 illustrates the effective throughput performance at 
the MCS index corresponding to a target BLER of 10-1, 
evaluated with respect to channel signal-to-noise ratio 
(SNR). The transport block size (TBS) is calculated based 
on the time-frequency resources allocated within a single 
slot duration, as shown in equation (1), where NSC, NDsym, M, 
and R denote the number of subcarriers, the number of 
PUSCH symbols per slot, the modulation order, and the 
code rate, respectively. Consequently, effective throughput 
is computed according to equation (2), where Tslot represents 
the slot duration. 

                         TBS = NSC ∙ NDsym ∙ M ∙ R                       (1) 

       Effective throughput = (1 – BLER) ∙ TBS / Tslot      (2) 

The equations imply that, when both the proposed 
method and the conventional method are configured with 
the same MCS index (M, R) and achieve identical BLER, 
the proposed method achieves a throughput gain of 
approximately 18.2% or 30%, depending on the ratio of the 
numbers of PUSCH symbols per slot between the two 
methods. For all tested conditions, the proposed method 
achieves a throughput gain of more than 15% compared to 
the conventional method. Furthermore, in rapidly varying 
channel conditions, the conventional method suffers from 
degraded BLER performance, thereby requiring the use of 
a lower MCS index compared to the proposed method at the 
same SNR. In the case of Channel 4, the conventional 
method fails to achieve the target BLER of 10-1 even with 
the MCS index of 5, the lowest available index in the PoC 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3. BLER performance on 
(a) Channel 1, (b) Channel 2, (c) Channel 3, and (d) Channel 4 
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system, across all tested SNRs. As a result, the throughput 
gain achieved by the proposed method over the conventional 
method increases as the channel conditions become more 
dynamic. 

B.  Indoor over-the-air test 

OTA tests were also conducted using physical antennas at 
SK Telecom’s Bundang office. The tests were categorized 
into fixed-point and mobile tests, and Fig. 5 illustrates the 
photographs of the office environments  and the test scenarios 
for both fixed-point and mobile tests. The receiving antenna 
was installed at the center of the office, whereas the 
transmitting antenna was either repositioned or moved at 
walking speed during the test. For all test scenarios, the MCS 
index was set to 10, and 2 symbols were used for DM-RS 
transmission in the conventional method.  

Table IV and Table Ⅴ summarize the test results of the 
proposed method and conventional method in the 3.7GHz and 
4.6GHz band, respectively. In the fixed-point test, both the 
proposed and conventional methods exhibited almost no block 
errors. Consequently, the proposed method achieved 
approximately 18% throughput gains for all tested Tx points. 
In the mobile test, the proposed method improved the 
throughput performance by approximately 13–18% in the 
actual indoor environments. 

 

(a) 

 

(b) 

 

(c) 

Fig. 5. Over-the-air test environments and scenarios. (a) photographs of 
the office environments, (b) fixed-point test scenarios, and (b) mobile test 

scenarios. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4. Effective throughput performance at the MCS index corresponding 
to a target BLER of 10-1 on (a) Channel 1, (b) Channel 2, (c) Channel 3, 

and (d) Channel 4 
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Ⅴ.  CONCLUSION 

In this paper, a PoC system for the AI-based pilotless 
communication method was developed and experimentally 
evaluated through channel emulation and OTA testing in 
practical indoor environments. The proposed method 
eliminates the need for pilot signals by using jointly trained AI 
models at both the transmitter and receiver, thereby enabling 
more efficient utilization of time-frequency resources. 

Experimental results demonstrate that the proposed 
method consistently achieves higher throughput compared to 
the conventional 5G NR-based communication method, with 
robust BLER performance even under rapidly varying channel 
conditions and in environments not considered during training. 
OTA tests in real indoor settings further confirm the practical 
effectiveness of the proposed method, demonstrating a 
throughput gain of 13–18% over the baseline. 

For future works, we plan to develop an AI model using 
real-world network data and evaluate its performance against 
the current simulation-trained model. In addition, we will 
upgrade the PoC system and conduct extensive field tests in 
outdoor and high-mobility environments to further validate 
the effectiveness and robustness of the proposed method. 
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TABLE IV.  INDOOR OVER-THE-AIR TEST RESULTS IN 3.7GHZ BAND 

Fixed-point test Mobile test 

Tx 

point 

SNR 

[dB] 

BLER Eff. T-put [Mbps] T-put 

gain [%] 

Tx 

path 

SNR 

[dB] 

BLER Eff. T-put [Mbps] T-put 

gain [%] Conv. Prop. Conv. Prop. Conv. Prop. Conv. Prop. 

#1 17.2  0.0000 0.0000 16.96  20.05  18.2 #1 18.6  0.0142 0.0125 16.72  19.80  18.4 

#2 18.9  0.0000 0.0000 16.96  20.05  18.2 #2 22.5  0.0002 0.0001 16.96  20.05  18.2 

#3 18.5  0.0000 0.0000 16.96  20.05  18.2 #3 17.8  0.0203 0.0318 16.62  19.41  16.8 

#4 23.3  0.0000 0.0000 16.96  20.05  18.2 #4 21.5  0.0585 0.0620 15.97  18.81  17.7 

#5 16.6  0.0000 0.0000 16.96  20.05  18.2 #5 23.0  0.0223 0.0335 16.59  19.38  16.8 

#6 14.2  0.0000 0.0000 16.96  20.05  18.2 

N/A 

#7 14.3  0.0000 0.0000 16.96  20.05  18.2 

#8 13.8  0.0000 0.0000 16.96  20.05  18.2 

#9 14.6  0.0000 0.0000 16.96  20.05  18.2 

#10 15.5  0.0000 0.0000 16.96  20.05  18.2 

TABLE V.  INDOOR OVER-THE-AIR TEST RESULTS IN 4.6GHZ BAND 

Fixed-point test Mobile test 

Tx 

point 

SNR 

[dB] 

BLER Eff. T-put [Mbps] T-put 

gain [%] 

Tx 

path 

SNR 

[dB] 

BLER Eff. T-put [Mbps] T-put 

gain [%] Conv. Prop. Conv. Prop. Conv. Prop. Conv. Prop. 

#1 14.1  0.0000 0.0004 16.96  20.04  18.1 #1 22.3 0.0217 0.0237 16.60  19.57  17.9 

#2 23.6  0.0000 0.0000 16.96  20.05  18.2 #2 22.4 0.0151 0.0270 16.71  19.51  16.8 

#3 16.6  0.0009 0.0033 16.95  19.98  17.9 #3 19.4 0.0687 0.1076 15.80  17.89  13.2 

#4 13.6  0.0000 0.0000 16.96  20.05  18.2 #4 19.6 0.0572 0.0638 15.99  18.77  17.4 

#5 17.2  0.0000 0.0000 16.96  20.05  18.2 #5 20.1 0.0567 0.0904 16.00  18.24  14.0 

#6 13.6  0.0000 0.0000 16.96  20.05  18.2 

N/A 

#7 17.2  0.0000 0.0000 16.96  20.05  18.2 

#8 17.7  0.0000 0.0000 16.96  20.05  18.2 

#9 14.7  0.0000 0.0000 16.96  20.05  18.2 

#10 11.8  0.0000 0.0023 16.96  20.00  17.9 

519


