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Abstract— This paper presents a framework for large-scale
anomaly detection on time-series key performance indicators
(KPIs) in 5G core networks. While state-of-the-art time-series
anomaly detection models can achieve high detection accuracy,
their early detection capability is often limited because they need
to accumulate sufficient time-series evidence within an inference
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challenges, we propose a framework that enhances early
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thresholds for each KPI’s anomaly scores based on their

distributional characteristics. These two contributions enable However, to be applicable in large-scale, per-KPI monitoring

timely anfi reliable detection across large-scale K.P 1 Stf'eams' We scenarios, these methods face several limitations that become
also carried out a proof-of-concept (PoC) verification of the 1,4 gionificant in real-world 5G core networks, as discussed
proposed approach in our real-world 5G core metwork, i, gection 1. Despite progress in this research field [6]-[10],
demonstrating its applicability to large-scale KPI anomaly . o work has directly addressed the challenges of real-
detection with regular summary reports. time, large-scale KPI anomaly detection in 5G core networks.
To address this gap, we propose a framework that enables
timely and automated tuning of anomaly score thresholds
across tens of thousands of various types of KPI streams.
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The remainder of this paper is organized as follows.
Section II describes the system architecture and defines the

As cellular infrastructure has evolved from 4G (LTE) to  problem addressed in this work. Section III presents proposed
cloud-native 5G cores, the operational requirements and large-scale Time-Series Anomaly Detection (TSAD)
conditions have changed dramatically, and early discussions framework, including the Point-Level  Anomaly
on 6G are already underway [1], [2]. In current commercial ~— Amplification (PAA) technique for enhancing detection
5G deployments, network functions (NFs) in the core network  responsiveness and  the  Distribution-Aware  Auto-
generate tens of thousands of time-series key performance  Thresholding (DAAT) method for adaptive threshold
indicators (KPIs) at several-minute intervals, and these will  calibration across diverse KPI streams. Section IV provides
need to be monitored in near real time. This capability will proof-of-concept (PoC) results from our real-world 5G core

I. INTRODUCTION

remain essential for the evolution toward Al-native networks. network. Section V concludes the paper.

In this regard, manual inspection of the time-series trends and

patterns in such large-scale KPI datasets is infeasible for II. SYSTEM ARCHITECTURE AND PROBLEM STATEMENT

human operators, making timely anomaly detection infeasible Figure 1 illustrates the system architecture for large-scale

as well. KPI anomaly detection in 5G core networks, including the
Recent studies have explored machine-learning and deep-  end-to-end data flow from the periodic collection of KPI data

learning approaches in the field of time-series anomaly  to Al-based anomaly analysis. The figure includes a

detection. Although models such as LSTM autoencoders, representative configuration of 5G core network functions,

GAN-based detectors, and the Anomaly Transformer have where key components such as AMF, SMF, UPF, and PCF are

been widely studied for time-series anomaly detection [3]-[5],  virtualized and deployed as individual network functions

they are generally studied under small-scale settings and do (NFs). Each NF is managed by its corresponding element
not consider the requirement of anomaly detection across  management system (EMS), which periodically collects and
thousands to tens of thousands of KPI streams. manages KPI data associated with that NF. These KPIs are
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stored in file format at each EMS and then aggregated by a
centralized server, where they are used for further analysis and
serve as input to the Al-based anomaly detection model. The
total number of KPIs can easily reach tens or even hundreds
of thousands. Each KPI is associated with a specific network
entity and measurement purpose such as an NF instance,
message type, or a protocol interface between NF pairs
resulting in a vast set of uniquely defined metrics.

In this regard, the ‘Conventional Al-based Per-KPI
Anomaly Scoring (Train/Infer)’ block, as shown in Fig. 1, is
responsible for generating baseline anomaly scores within our
framework. It periodically collects time-series data for each
KPI and trains an independent deep learning model per KPI
stream. During operation, these trained models infer initial
anomaly scores in real time. In our implementation, we utilize
the Anomaly Transformer [5], a state-of-the-art unsupervised
time-series anomaly detection model. During training, the
model learns temporal dependencies through self-attention
while optimizing both reconstruction error and association
discrepancy losses. At inference, anomaly scores are derived
by jointly evaluating reconstruction error and association
discrepancy. However, even such state-of-the-art models face
two key limitations in real-world 5G core networks:

1) Detection-latency bottleneck: Window-based inference
pipelines often detect an incident only after a sufficient
number of anomalous samples have accumulated within the
sliding window, which in turn delays the initial alert when
operators require the earliest warning.

2) Threshold-engineering bottleneck: Each KPI typically
follows its own anomaly score distribution, which is often
non-Gaussian. Consequently, manual tuning of thresholds
across tens of thousands of KPI streams is infeasible, and
naive approaches such as applying a Z-score rule uniformly
across all KPIs can lead to excessive false alarms for some
KPIs while failing to anomalies in others.

To overcome these limitations, our framework
incorporates the ‘Per-KPI Adaptive Anomaly Scoring &
Decision’ block, as depicted in Fig. 1. This block applies two
core techniques: point-level anomaly amplification to improve
responsiveness by enhancing early-stage anomaly signals, and
a distribution-aware auto-thresholding mechanism that
dynamically calibrates detection thresholds based on each
KPI’s anomaly score distribution. These components work
together to achieve timely and reliable anomaly detection
across large-scale KPI streams in 5G core networks.

III. THE PROPOSED LARGE-SCALE TSAD FRAMEWORK

The proposed framework integrates two key techniques:
point-level anomaly amplification (PAA) and distribution-
aware auto-thresholding (DAAT). These two components
jointly enable scalable per-KPI time-series anomaly detection
in real-world 5G core networks. An overview of the proposed
framework, which incorporates PAA and DAAT to perform
large-scale time-series anomaly detection, is presented in
Figure 2. The following subsections describe each technique
in detail.

A. Point-Level Anomaly Amplication (PAA)

As introduced in Section II, to address the detection latency
issue, we incorporate a Point-Level Anomaly Amplification
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Fig. 2. Overview of the proposed large-scale TSAD framework

(PAA) mechanism, which enhances the sensitivity of
anomaly scores to rapid local changes within the inference
window. The PAA mechanism is inspired by local Z-score-
based approaches, which have been used for anomaly
detection in time-series data [10]. However, in this paper, we
leverage this concept in a novel way by combining it with deep
learning (DL)-based anomaly detectors to efficiently enhance
responsiveness to early anomaly signals.

This mechanism is lightweight and requires no modification
or retraining of the underlying detection model, making it
highly practical for large-scale deployments. As a result, the
system can react more promptly to sudden deviations in KPI
behavior, enabling faster detection of point anomalies by
enhancing each raw anomaly score with a localized point-
anomaly weight. This weight is computed during the inference
stage in four steps as follows.

1) Adaptive Fractional Differentiation:

For each KPI, given the most recent sequence {x..+/, ..., X}
of length L, we define f(x) as a function that characterizes
the temporal trend within this window. To remove low-
frequency trend components while retaining sharp local
changes, we compute a fractionally differenced sequence
defined as:

fre) =c0-fo) +cl-flx) +c2-f2(x), (1)
where f™(x) denotes the n-th order discrete derivative of
f(x). The coefficients {co, c1, c2} are selected such that each
lies between 0 and 1, and are normalized to sum to 1, which
enables a flexible approximation of the desired differentiation
order n*. Unlike conventional differentiation where n is
restricted to integers, here n* is generalized to any real value
between 0 and 2, allowing fractional-order derivatives that
capture intermediate behaviors between smoothing (n* = 0)
and sharp differencing (n* = 2). Specifically, the coefficients
are determined according to the following cases:

e [f0<sn*<1,wesetco=1-n* ci=n* c2=0.

o Ifl<nmn*<2 wesetco=0,c1=2-n* co=n*-1.
These conditions ensure that the weighted average of adjacent
integer-order derivatives approximates the target fractional
order n*, while maintaining algebraic simplicity and
computational efficiency.



2) Local Standardized Point-Anomaly Score :

For each KPI, the mean p; and standard deviation o are
computed from the frantionally differened function f™(x)
over the most recent L-1 samples, excluding the current
sample x ;. The local standardized point-anomaly score is
then defined as

ze= | (ue=Xe) [ Ot |. 2
Both ur and or are updated at each inference step, ensuring
that z reflects only the most recent window of observations.

3) Conditional Weighting:
The raw anomaly score from the backbone model is scaled
by a weight Wp4, which is set to K-z: when z: >z, and to 1
otherwise. The parameter K controls the strength of
amplication, while Zzx defines the minimum deviation
required to trigger it.

4) Amplified Anomaly Score:
The final anomaly score used in the proposed framework is
computed as the product of the raw backbone score and the
point-anomaly weight:

Anomaly Score psa = Wpy - Scorey, (3)
where Scorey denotes the original anomaly score produced by
the backbone (e.g., Anomaly Transformer), and Wp, is the
conditional weight defined in Step 3. This weight amplifies
the anomaly score when the deviation exceeds a threshold zs,
and equals 1 otherwise.

Amplification is applied selectively, which enhances the
sensitivity to point anomalies. Although a slight increase in
false alarms is theoretically possible, this can be effectively
controlled through tunable parameters such as the
amplification factor K, the fractional differencing order n*,
and the threshold z. This yields a more flexible and effective
scoring mechanism compared to raw backbone outputs.

B. Distribution-Aware Auto-Thresholding (DAAT)

While PAA enhances anomaly scoring by amplifying early
signals of point anomalies, it is also necessary for reliable
anomaly detection that anomaly score thresholds are properly
calibrated for each KPI. To address this challenge, we
introduce  the Distribution-Aware  Auto-Thresholding
(DAAT) module. In existing approaches, such as prior work
[10], applying a simple Z-score rule uniformly to the anomaly
scores of individual KPIs still fails to account for the fact that
each KPI often follows a distinct anomaly score distribution.

DAAT automatically computes reliable decision thresholds
by analyzing the anomaly score distribution of each KPI
stream. It adapts to diverse score characteristics across
different KPIs and ensures threshold stability even for KPI
streams with near-constant temporal behavior. This is
achieved by combining empirical and parametric views of the
score distribution and by applying a sparsity-aware correction
to prevent the threshold from becoming unnecessarily large in
the case of near-constant KPI streams. The detailed procedure
is described in the following steps.

1) Empirical Score Sampling :

During the training phase, time-series KPI data is provided
as input. An unsupervised anomaly detection model is trained
separately for each KPI to learn its normal behavior patterns.
The trained model is then applied to the same training data to
generate anomaly score samples across the entire training
window. We denote the input time-series as x = {x;, x2, ..., xz}.
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Applying the trained model yields a corresponding sequence
of anomaly scores, s = {s;, 52, ..., s7}. The set s serves as the
empirical sample for deriving the score distribution in the
following steps.

2) Measured CDF (M-CDF) :

To represent the empirical distribution of the anomaly scores,
we construct a cumulative distribution function (CDF)
directly from the histogram. This histogram-based CDF,
denoted by Fy,(2), is

Fy(z) = %Z{:o 1{s, < z}, 4

where 1{-} is the indicator function. Based on this empirical
CDF, we define the M-CDF-based threshold T; as the (1 —
p)-quantile of this distribution:

T, = Fy'(1-p), ®)

where p is a user-defined tail probability that determines how
strictly the threshold filters extreme anomaly scores.

M-CDF directly reflects the observed score distribution,
making it effective when anomaly scores exhibit complex
characteristics, such as clustering in specific ranges or
intermittent sharp fluctuations. By deriving the threshold from
the empirical histogram, the method can accurately capture
such characteristics. However, it may also be sensitive to
temporary fluctuations in the distribution caused by a small
number of unusual anomaly score samples, which can result
in excessively high thresholds and increase the risk of missed
detections.

3) Estimated-CDF (E-CDF) :

To complement the empirical estimation from M-CDF, the
same set of anomaly scores is fitted to a family of parametric
probability distribution functions (PDFs), including Normal,
Log-normal, Exponential, Gamma, Beta. Each candidate
distribution is fitted by minimizing the root mean square error
(RMSE) with respect to the empirical score histogram. The
distribution with the lowest RMSE yields the estimated CDF,
denoted Fy (z), along with its optimal parameters.

Based on this estimated CDF, we define the E-CDF-based
threshold T, as the (1 — p)-quantile:

T, =Fz'(1—p), ©)

where p is a user-defined tail probability (e.g., 10 to 10-) as
in Step 2, controlling the sensitivity of anomaly detection in
the E-CDF-based thresholding.

E-CDF determines the threshold by selecting the best-fitted
distribution from a set of well-established probability models,
enabling it to capture broader trends in the data while being
less sensitive to extreme outliers. This approach generally
produces a more stable threshold. However, when anomaly
scores are heavily concentrated in specific ranges or show
intermittent sharp fluctuations, E-CDF may fail to capture
such localized characteristics, potentially leading to
excessively low thresholds and a higher risk of false alarm.

4) Combined Threshold (T3) :
The two thresholds T; (from M-CDF) and T, (from E-CDF)
are combined into a single threshold via a linear combination:

(7

where 1+ c; =1, and ¢; >0, ¢2 > 0. The default weights are
set to ¢; = 0.30 and ¢, = 0.70, which has been validated as

Ts=c; Ty +¢c, Ty,
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Fig. 3. Comparison of anomaly detection response time Without PAA (top)
and With PAA (bottom).

effective in our real-world 5G core network. These
coefficients can also be further tuned according to operator
feedback or specific deployment requirement.

By combining the M-CDF and E-CDF thresholds, T;
effectively integrates the detailed distributional characteristics
from M-CDF and the stability of E-CDF. This hybrid
thresholding approach enables the automatic determination of
anomaly score thresholds for each KPI in large-scale time-
series KPI analysis, thereby providing a consistent and robust
decision criterion that can be directly applied to anomaly
detection in 5G core networks.

5) Sparsity-Aware Correction :

To address sparse or low-variance KPI streams where even
minor changes can produce abnormally high anomaly scores,
we define a sparsity metric p as the ratio of the most frequent
score value to the total number of samples. The value of p
approaches 1 for nearly constant KPI streams and decreases as
the underlying time-series becomes more dynamic or
fluctuating. To mitigate the over-amplification of anomaly
scores in high-p scenarios, we apply a correction factor C(p)
that exponentially scales the combined threshold T5:

Clp) =( )k, @®)

where k=1.15 is a scaling coefficient empirically validated in
our real-world 5G core network, which determines the level
of exponential adjustment for compensating anomaly score
spikes in sparse KPI streams, and € is a small positive constant
introduced to avoid division by zero.

6) Final Threshold (Tfina)
The final threshold for each KPI stream is defined as:

Ttina1 = C(p) " T5. )

During real-time inference, the model generates an anomaly
score s; for each KPI based on its recent time-series behavior,
and an anomaly is detected when

1
(1-p)+e

S¢ > Tfina1~

(10)

The final threshold T¥,,, integrates all preceding components,
providing dynamic adaptation to the distributional
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Fig. 4. Sample results for four KPIs after applying the proposed PAA and
DAAT methods in our 5G core network.

characteristics of each KPI stream and enabling stable and
reliable anomaly detection even for highly skewed or near-
constant score distributions.

C. Summary of Framework Contributions

The main technical contributions of this work are
summarized as follows:

1) Improved Responsiveness to Point Anomalies:

We introduce a lightweight point-level anomaly
amplification  mechanism that enhances detection
responsiveness by increasing the sensitivity of anomaly
scores to local variations. This is achieved without requiring
any modification or retraining of the backbone detection
model.

2) Automated Threshold Adaptation for Per-KPI
Anomaly Scores:
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Fig. 5. Example of anomaly detection summary report generated every five
minutes using the proposed framework in our real-world 5G core network.

We propose an adaptive thresholding method that
automatically calibrates anomaly score thresholds for each
KPI by jointly analyzing measured and estimated score
distributions. This approach addresses the limitations of
conventional Z-score-based thresholding, particularly in
large-scale TSAD scenarios.

Overall, these contributions enable practical, reliable, and
scalable anomaly detection across tens of thousands of KPI
streams in real-world 5G core networks.

IV. POC VERIFICATION

To validate the feasibility of deploying the proposed
framework in a real-world operational environment, we
conducted a proof-of-concept (PoC) using real network data
from our 5G core network. The PoC involved 10 major
network functions (NFs), including AMF, SMF, UPF, and
CSCEF, covering approximately 37,000 large-scale time-series
KPIs. The objective was to verify that the framework,
incorporating both anomaly detection responsiveness
enhancement and automated per-KPI threshold determination,
operates reliably at scale in the real-world network
environment. As outlined in Figure 1, KPI data are collected
every five minutes from each NF via the EMS and stored in a
dedicated database server. The Al-based anomaly detection
server processes approximately 37,000 KPI streams within the
same five-minute interval, automatically performing time-
series anomaly detection using the proposed method and
generating a summary report of the results.

Figure 3 illustrates the system performing time-series
anomaly detection over a period that includes the time when
an anomaly event occurred due to a network maintenance
activity in a commercial network. The blue curve, labeled as
KPI #1, represents the time series of the initial attempt count
within the SMF, the red solid line indicates the anomaly score,
and the red dashed line denotes the threshold. The upper graph
shows the case before PAA was applied, where anomaly
detection was delayed relative to the anomaly occurrence. The
lower graph presents the case after PAA application, where
the anomaly was detected immediately at the occurrence time.
In addition, the baseline anomaly score levels in normal
conditions remain sufficiently low and comparable to those
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before PAA application, confirming that the enhancement
does not introduce undesired effects under normal operation.

The proposed Point-Level Anomaly Amplification (PAA)
and Distribution-Aware Auto-Thresholding (DAAT) methods
were applied for this PoC to a large set of KPIs in our 5G core
network, and their effectiveness in performing time-series
anomaly detection was verified in close collaboration with our
network operations team. Please refer to Figure 4 for related
examples of four KPIs. For confidentiality, the specific KPI
names are anonymized and denoted in a generic form (e.g.,
“KPI type A” and “KPI #1”). The system also provides the
operators with an anomaly detection summary report, such as
the one shown in Figure 5, every five minutes for the
anomalies detected using the proposed method. Through this
PoC, we verified that the proposed framework for large-scale
time-series anomaly detection can be reliably deployed in a
real-world 5G core network.

V. CONCLUSION

This paper presented a practical framework for Al-based
large-scale time-series anomaly detection. The framework
integrates two key techniques. The first is a Point-Level
Anomaly Amplification (PAA) mechanism that enhances
detection responsiveness by amplifying early anomaly
signals. The second is a Distribution-Aware Auto-
Thresholding (DAAT) method that automatically calibrates
per-KPI anomaly score thresholds based on their
distributional characteristics. We also described the detailed
algorithms of each component to provide a clear
understanding. Through PoC validation in a real-world 5G
core network, covering approximately 37,000 KPIs and
generating anomaly detection reports for operators every five
minutes, we demonstrated that the proposed framework can
be reliably deployed for monitoring tens of thousands of KPIs
at scale. In the future, we aim to further enhance the scalability
and adaptability of the framework and refine the algorithms to
improve practical detection capability, in preparation for the
evolution toward Al-native networks.
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