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Abstract— This paper presents a framework for large-scale 
anomaly detection on time-series key performance indicators 
(KPIs) in 5G core networks. While state-of-the-art time-series 
anomaly detection models can achieve high detection accuracy, 
their early detection capability is often limited because they need 
to accumulate sufficient time-series evidence within an inference 
window to identify diverse anomaly patterns. Furthermore, it is 
challenging to determine a customized anomaly score threshold 
for each of the tens of thousands of diverse KPI streams since 
each KPI exhibits a unique score distribution. To address these 
challenges, we propose a framework that enhances early 
detection capability through a lightweight point-level anomaly 
amplification technique and automatically determines 
thresholds for each KPI’s anomaly scores based on their 
distributional characteristics. These two contributions enable 
timely and reliable detection across large-scale KPI streams. We 
also carried out a proof-of-concept (PoC) verification of the 
proposed approach in our real-world 5G core network, 
demonstrating its applicability to large-scale KPI anomaly 
detection with regular summary reports. 

Keywords—Large-scale time-series anomaly detection, 5G 
core network, point-level anomaly amplification, distribution-
aware auto-thresholding 

I. INTRODUCTION 
As cellular infrastructure has evolved from 4G (LTE) to 

cloud-native 5G cores, the operational requirements and 
conditions have changed dramatically, and early discussions 
on 6G are already underway [1], [2]. In current commercial 
5G deployments, network functions (NFs) in the core network 
generate tens of thousands of time-series key performance 
indicators (KPIs) at several-minute intervals, and these will 
need to be monitored in near real time. This capability will 
remain essential for the evolution toward AI-native networks. 
In this regard, manual inspection of the time-series trends and 
patterns in such large-scale KPI datasets is infeasible for 
human operators, making timely anomaly detection infeasible 
as well. 

Recent studies have explored machine-learning and deep-
learning approaches in the field of time-series anomaly 
detection. Although models such as LSTM autoencoders, 
GAN-based detectors, and the Anomaly Transformer have 
been widely studied for time-series anomaly detection [3]-[5], 
they are generally studied under small-scale settings and do 
not consider the requirement of anomaly detection across 
thousands to tens of thousands of KPI streams. 

 
Fig. 1. Sysyem architecture for large-scale KPI anomaly detection in 5G 
core networks. 

However, to be applicable in large-scale, per-KPI monitoring 
scenarios, these methods face several limitations that become 
more significant in real-world 5G core networks, as discussed 
in Section II. Despite progress in this research field [6]-[10], 
no prior work has directly addressed the challenges of real-
time, large-scale KPI anomaly detection in 5G core networks. 
To address this gap, we propose a framework that enables 
timely and automated tuning of anomaly score thresholds 
across tens of thousands of various types of KPI streams. 

The remainder of this paper is organized as follows. 
Section II describes the system architecture and defines the 
problem addressed in this work. Section III presents proposed 
large-scale Time-Series Anomaly Detection (TSAD) 
framework, including the Point-Level Anomaly 
Amplification (PAA) technique for enhancing detection 
responsiveness and the Distribution-Aware Auto-
Thresholding (DAAT) method for adaptive threshold 
calibration across diverse KPI streams. Section IV provides 
proof-of-concept (PoC) results from our real-world 5G core 
network. Section V concludes the paper. 

II. SYSTEM ARCHITECTURE AND PROBLEM STATEMENT 
Figure 1 illustrates the system architecture for large-scale 

KPI anomaly detection in 5G core networks, including the 
end-to-end data flow from the periodic collection of KPI data 
to AI-based anomaly analysis. The figure includes a 
representative configuration of 5G core network functions, 
where key components such as AMF, SMF, UPF, and PCF are 
virtualized and deployed as individual network functions 
(NFs). Each NF is managed by its corresponding element 
management system (EMS), which periodically collects and 
manages KPI data associated with that NF. These KPIs are 
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stored in file format at each EMS and then aggregated by a 
centralized server, where they are used for further analysis and 
serve as input to the AI-based anomaly detection model. The 
total number of KPIs can easily reach tens or even hundreds 
of thousands. Each KPI is associated with a specific network 
entity and measurement purpose such as an NF instance, 
message type, or a protocol interface between NF pairs 
resulting in a vast set of uniquely defined metrics.  

In this regard, the ‘Conventional AI-based Per-KPI 
Anomaly Scoring (Train/Infer)’ block, as shown in Fig. 1, is 
responsible for generating baseline anomaly scores within our 
framework. It periodically collects time-series data for each 
KPI and trains an independent deep learning model per KPI 
stream. During operation, these trained models infer initial 
anomaly scores in real time. In our implementation, we utilize 
the Anomaly Transformer [5], a state-of-the-art unsupervised 
time-series anomaly detection model. During training, the 
model learns temporal dependencies through self-attention 
while optimizing both reconstruction error and association 
discrepancy losses. At inference, anomaly scores are derived 
by jointly evaluating reconstruction error and association 
discrepancy. However, even such state-of-the-art models face 
two key limitations in real-world 5G core networks: 

1) Detection-latency bottleneck: Window-based inference 
pipelines often detect an incident only after a sufficient 
number of anomalous samples have accumulated within the 
sliding window, which in turn delays the initial alert when 
operators require the earliest warning. 

2) Threshold-engineering bottleneck: Each KPI typically 
follows its own anomaly score distribution, which is often 
non-Gaussian. Consequently, manual tuning of thresholds 
across tens of thousands of KPI streams is infeasible, and 
naive approaches such as applying a Z-score rule uniformly 
across all KPIs can lead to excessive false alarms for some 
KPIs while failing to anomalies in others. 

 

To overcome these limitations, our framework 
incorporates the ‘Per-KPI Adaptive Anomaly Scoring & 
Decision’ block, as depicted in Fig. 1. This block applies two 
core techniques: point-level anomaly amplification to improve 
responsiveness by enhancing early-stage anomaly signals, and 
a distribution-aware auto-thresholding mechanism that 
dynamically calibrates detection thresholds based on each 
KPI’s anomaly score distribution. These components work 
together to achieve timely and reliable anomaly detection 
across large-scale KPI streams in 5G core networks. 

III. THE PROPOSED LARGE-SCALE TSAD FRAMEWORK 
The proposed framework integrates two key techniques: 

point-level anomaly amplification (PAA) and distribution-
aware auto-thresholding (DAAT). These two components 
jointly enable scalable per-KPI time-series anomaly detection 
in real-world 5G core networks. An overview of the proposed 
framework, which incorporates PAA and DAAT to perform 
large-scale time-series anomaly detection, is presented in 
Figure 2. The following subsections describe each technique 
in detail.  

A. Point-Level Anomaly Amplication (PAA) 
As introduced in Section II, to address the detection latency 

issue, we incorporate a Point-Level Anomaly Amplification 

 

 
Fig. 2. Overview of the proposed large-scale TSAD framework 

 (PAA) mechanism, which enhances the sensitivity of 
anomaly scores to rapid local changes within the inference 
window. The PAA mechanism is inspired by local Z-score-
based approaches, which have been used for anomaly 
detection in time-series data [10]. However, in this paper, we 
leverage this concept in a novel way by combining it with deep 
learning (DL)-based anomaly detectors to efficiently enhance 
responsiveness to early anomaly signals. 

This mechanism is lightweight and requires no modification 
or retraining of the underlying detection model, making it 
highly practical for large-scale deployments. As a result, the 
system can react more promptly to sudden deviations in KPI 
behavior, enabling faster detection of point anomalies by 
enhancing each raw anomaly score with a localized point-
anomaly weight. This weight is computed during the inference 
stage in four steps as follows. 

1) Adaptive Fractional Differentiation: 
For each KPI, given the most recent sequence {xt-L+1, …, xt} 

of length L, we define  as a function that characterizes 
the temporal trend within this window. To remove low-
frequency trend components while retaining sharp local 
changes, we compute a fractionally differenced sequence 
defined as: 

  c0 ∙   c1 ∙   c2 ∙ ,        (1) 

where   denotes the n-th order discrete derivative of 
. The coefficients {c0, c1, c2} are selected such that each 
lies between 0 and 1, and are normalized to sum to 1, which 
enables a flexible approximation of the desired differentiation 
order n*. Unlike conventional differentiation where n is 
restricted to integers, here n* is generalized to any real value 
between 0 and 2, allowing fractional-order derivatives that 
capture intermediate behaviors between smoothing (∗  0) 
and sharp differencing (∗  2). Specifically, the coefficients 
are determined according to the following cases: 
 

• If 0 ≤ n* ≤ 1, we set c0 = 1 - n*, c1 = n*, c2 = 0. 

• If 1 < n* ≤ 2, we set c0 = 0, c1 = 2 - n*, c2 = n* - 1. 

These conditions ensure that the weighted average of adjacent 
integer-order derivatives approximates the target fractional 
order n*, while maintaining algebraic simplicity and 
computational efficiency. 
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2) Local Standardized Point-Anomaly Score : 
For each KPI, the mean μt and standard deviation σt are 

computed from the frantionally differened function   
over the most recent L-1 samples, excluding the current 
sample   t . The local standardized point-anomaly score is 
then defined as 
                      zt  | μt – x t  / σt | .                            (2) 
Both μt and σt are updated at each inference step, ensuring 
that zt reflects only the most recent window of observations. 
 

3) Conditional Weighting: 
 The raw anomaly score from the backbone model is scaled 
by a weight WPA, which is set to K∙zt  when zt >zth , and to 1 
otherwise. The parameter K controls the strength of 
amplication, while zth defines the minimum deviation 
required to trigger it. 
 

4) Amplified Anomaly Score: 
 The final anomaly score used in the proposed framework is 
computed as the product of the raw backbone score and the 
point-anomaly weight: 
                      Anomaly Score PAA = WPA ∙ Score0 ,              (3) 
where Score0 denotes the original anomaly score produced by 
the backbone (e.g., Anomaly Transformer), and WPA is the 
conditional weight defined in Step 3. This weight amplifies 
the anomaly score when the deviation exceeds a threshold zth, 
and equals 1 otherwise.  

Amplification is applied selectively, which enhances the 
sensitivity to point anomalies. Although a slight increase in 
false alarms is theoretically possible, this can be effectively 
controlled through tunable parameters such as the 
amplification factor K, the fractional differencing order n*, 
and the threshold zth. This yields a more flexible and effective 
scoring mechanism compared to raw backbone outputs. 

B. Distribution-Aware Auto-Thresholding (DAAT) 
While PAA enhances anomaly scoring by amplifying early 

signals of point anomalies, it is also necessary for reliable 
anomaly detection that anomaly score thresholds are properly 
calibrated for each KPI. To address this challenge, we 
introduce the Distribution-Aware Auto-Thresholding 
(DAAT) module. In existing approaches, such as prior work 
[10], applying a simple Z-score rule uniformly to the anomaly 
scores of individual KPIs still fails to account for the fact that 
each KPI often follows a distinct anomaly score distribution. 

DAAT automatically computes reliable decision thresholds 
by analyzing the anomaly score distribution of each KPI 
stream. It adapts to diverse score characteristics across 
different KPIs and ensures threshold stability even for KPI 
streams with near-constant temporal behavior. This is 
achieved by combining empirical and parametric views of the 
score distribution and by applying a sparsity-aware correction 
to prevent the threshold from becoming unnecessarily large in 
the case of near-constant KPI streams. The detailed procedure 
is described in the following steps. 

1) Empirical Score Sampling : 
During the training phase, time-series KPI data is provided 

as input. An unsupervised anomaly detection model is trained 
separately for each KPI to learn its normal behavior patterns. 
The trained model is then applied to the same training data to 
generate anomaly score samples across the entire training 
window. We denote the input time-series as x = {x1, x2, …, xT}. 

Applying the trained model yields a corresponding sequence 
of anomaly scores, s = {s1, s2, …, sT}. The set s serves as the 
empirical sample for deriving the score distribution in the 
following steps. 

2) Measured CDF (M-CDF) : 
To represent the empirical distribution of the anomaly scores, 

we construct a cumulative distribution function (CDF) 
directly from the histogram. This histogram-based CDF, 
denoted by , is 

  


∑  ≤ 
 ,                     (4) 

where ∙ is the indicator function. Based on this empirical 
CDF, we define the M-CDF-based threshold   as the 1 −
-quantile of this distribution: 

  
1 − ,                           (5) 

where  is a user-defined tail probability that determines how 
strictly the threshold filters extreme anomaly scores. 

M-CDF directly reflects the observed score distribution, 
making it effective when anomaly scores exhibit complex 
characteristics, such as clustering in specific ranges or 
intermittent sharp fluctuations. By deriving the threshold from 
the empirical histogram, the method can accurately capture 
such characteristics. However, it may also be sensitive to 
temporary fluctuations in the distribution caused by a small 
number of unusual anomaly score samples, which can result 
in excessively high thresholds and increase the risk of missed 
detections. 

3) Estimated-CDF (E-CDF) : 
To complement the empirical estimation from M-CDF, the 

same set of anomaly scores is fitted to a family of parametric 
probability distribution functions (PDFs), including Normal, 
Log-normal, Exponential, Gamma, Beta. Each candidate 
distribution is fitted by minimizing the root mean square error 
(RMSE) with respect to the empirical score histogram. The 
distribution with the lowest RMSE yields the estimated CDF, 
denoted , along with its optimal parameters.  

Based on this estimated CDF, we define the E-CDF-based 
threshold  as the 1 − -quantile: 

  
1 − ,                         (6) 

where  is a user-defined tail probability (e.g., 10-4 to 10-3) as 
in Step 2, controlling the sensitivity of anomaly detection in 
the E-CDF-based thresholding. 

E-CDF determines the threshold by selecting the best-fitted 
distribution from a set of well-established probability models, 
enabling it to capture broader trends in the data while being 
less sensitive to extreme outliers. This approach generally 
produces a more stable threshold. However, when anomaly 
scores are heavily concentrated in specific ranges or show 
intermittent sharp fluctuations, E-CDF may fail to capture 
such localized characteristics, potentially leading to 
excessively low thresholds and a higher risk of false alarm. 

4) Combined Threshold (T3) : 
The two thresholds  (from M-CDF) and  (from E-CDF) 

are combined into a single threshold via a linear combination: 

   ∙    ∙ ,                        (7) 

where c1 + c2 = 1, and c1  > 0, c2 > 0. The default weights are 
set to c1 = 0.30 and c2 = 0.70, which has been validated as  
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Fig. 3. Comparison of anomaly detection response time Without PAA (top) 
and With PAA (bottom). 

effective in our real-world 5G core network. These 
coefficients can also be further tuned according to operator 
feedback or specific deployment requirement. 

By combining the M-CDF and E-CDF thresholds,  
effectively integrates the detailed distributional characteristics 
from M-CDF and the stability of E-CDF. This hybrid 
thresholding approach enables the automatic determination of 
anomaly score thresholds for each KPI in large-scale time-
series KPI analysis, thereby providing a consistent and robust   
decision criterion that can be directly applied to anomaly 
detection in 5G core networks. 

5) Sparsity-Aware Correction : 
 To address sparse or low-variance KPI streams where even 
minor changes can produce abnormally high anomaly scores, 
we define a sparsity metric  as the ratio of the most frequent 
score value to the total number of samples. The value of  
approaches 1 for nearly constant KPI streams and decreases as 
the underlying time-series becomes more dynamic or 
fluctuating. To mitigate the over-amplification of anomaly 
scores in high- scenarios, we apply a correction factor  
that exponentially scales the combined threshold : 

   


,                           (8) 

where k = 1.15 is a scaling coefficient empirically validated in 
our real-world 5G core network, which determines the level 
of exponential adjustment for compensating anomaly score 
spikes in sparse KPI streams, and ε is a small positive constant 
introduced to avoid division by zero. 

6) Final Threshold (Tfinal) 
 The final threshold for each KPI stream is defined as: 

   ∙  .                           (9) 

During real-time inference, the model generates an anomaly 
score st for each KPI based on its recent time-series behavior, 
and an anomaly is detected when 

 > .                                  (10) 

The final threshold  integrates all preceding components, 
providing dynamic adaptation to the distributional  

  

Fig. 4. Sample results for four KPIs after applying the proposed PAA and 
DAAT methods in our 5G core network. 

characteristics of each KPI stream and enabling stable and 
reliable anomaly detection even for highly skewed or near-
constant score distributions. 

C. Summary of Framework Contributions 
The main technical contributions of this work are 

summarized as follows: 

1) Improved Responsiveness to Point Anomalies:  
We introduce a lightweight point-level anomaly 

amplification mechanism that enhances detection 
responsiveness by increasing the sensitivity of anomaly 
scores to local variations. This is achieved without requiring 
any modification or retraining of the backbone detection 
model. 

2) Automated Threshold Adaptation for Per-KPI 
Anomaly Scores:  
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Fig. 5. Example of anomaly detection summary report generated every five 
minutes using the proposed framework in our real-world 5G core network. 

We propose an adaptive thresholding method that 
automatically calibrates anomaly score thresholds for each 
KPI by jointly analyzing measured and estimated score 
distributions. This approach addresses the limitations of 
conventional Z-score-based thresholding, particularly in 
large-scale TSAD scenarios.  

Overall, these contributions enable practical, reliable, and 
scalable anomaly detection across tens of thousands of KPI 
streams in real-world 5G core networks. 

IV. POC VERIFICATION 
To validate the feasibility of deploying the proposed 

framework in a real-world operational environment, we 
conducted a proof-of-concept (PoC) using real network data 
from our 5G core network. The PoC involved 10 major 
network functions (NFs), including AMF, SMF, UPF, and 
CSCF, covering approximately 37,000 large-scale time-series 
KPIs. The objective was to verify that the framework, 
incorporating both anomaly detection responsiveness 
enhancement and automated per-KPI threshold determination, 
operates reliably at scale in the real-world network 
environment. As outlined in Figure 1, KPI data are collected 
every five minutes from each NF via the EMS and stored in a 
dedicated database server. The AI-based anomaly detection 
server processes approximately 37,000 KPI streams within the 
same five-minute interval, automatically performing time-
series anomaly detection using the proposed method and 
generating a summary report of the results. 

Figure 3 illustrates the system performing time-series 
anomaly detection over a period that includes the time when 
an anomaly event occurred due to a network maintenance 
activity in a commercial network. The blue curve, labeled as 
KPI #1, represents the time series of the initial attempt count 
within the SMF, the red solid line indicates the anomaly score, 
and the red dashed line denotes the threshold. The upper graph 
shows the case before PAA was applied, where anomaly 
detection was delayed relative to the anomaly occurrence. The 
lower graph presents the case after PAA application, where 
the anomaly was detected immediately at the occurrence time. 
In addition, the baseline anomaly score levels in normal 
conditions remain sufficiently low and comparable to those 

before PAA application, confirming that the enhancement 
does not introduce undesired effects under normal operation. 

The proposed Point-Level Anomaly Amplification (PAA) 
and Distribution-Aware Auto-Thresholding (DAAT) methods 
were applied for this PoC to a large set of KPIs in our 5G core 
network, and their effectiveness in performing time-series 
anomaly detection was verified in close collaboration with our 
network operations team. Please refer to Figure 4 for related 
examples of four KPIs. For confidentiality, the specific KPI 
names are anonymized and denoted in a generic form (e.g., 
“KPI type A” and “KPI #1”). The system also provides the 
operators with an anomaly detection summary report, such as 
the one shown in Figure 5, every five minutes for the 
anomalies detected using the proposed method. Through this 
PoC, we verified that the proposed framework for large-scale 
time-series anomaly detection can be reliably deployed in a 
real-world 5G core network. 

V. CONCLUSION 
This paper presented a practical framework for AI-based 

large-scale time-series anomaly detection. The framework 
integrates two key techniques. The first is a Point-Level 
Anomaly Amplification (PAA) mechanism that enhances 
detection responsiveness by amplifying early anomaly 
signals. The second is a Distribution-Aware Auto-
Thresholding (DAAT) method that automatically calibrates 
per-KPI anomaly score thresholds based on their 
distributional characteristics. We also described the detailed 
algorithms of each component to provide a clear 
understanding. Through PoC validation in a real-world 5G 
core network, covering approximately 37,000 KPIs and 
generating anomaly detection reports for operators every five 
minutes, we demonstrated that the proposed framework can 
be reliably deployed for monitoring tens of thousands of KPIs 
at scale. In the future, we aim to further enhance the scalability 
and adaptability of the framework and refine the algorithms to 
improve practical detection capability, in preparation for the 
evolution toward AI-native networks. 
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