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Abstract—This paper presents an experimental study on real-
time traffic characteristics in commercial 5G NR gNBs for
energy-saving applications. Using a 4K YouTube streaming sce-
nario with TTI-level data collection (0.5 ms granularity), we
analyze traffic dynamics at the MAC level, revealing repetitive
burst/idle patterns. By mapping idle intervals into advanced sleep
modes (ASM), we show that up to 18% energy savings can be
achieved compared to full-load operation. Unlike conventional
approaches relying on long-term traffic statistics, our study
emphasizes fine-grained, scheduler-level traffic analysis in real
environments, providing practical insights for both Rel-15/16
deployments and future Pre-6G networks. This experimental
evaluation forms a foundation for embedding AI-driven energy-
saving control into commercial base stations.
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energy saving, advanced sleep mode.

I. INTRODUCTION

With the evolution of next-generation cellular networks,
energy efficiency has become a critical challenge in the design
and operation of radio access networks (RAN). Base stations
account for the majority of network energy consumption,
consuming significant power regardless of traffic load. Most
existing approaches to network energy saving (NES) have
focused on long-term traffic patterns or control-plane mecha-
nisms such as radio resource control (RRC) and radio resource
management (RRM), but these methods suffer from a lack of
responsiveness and fine-grained control [1].

To address these limitations, Advanced Sleep Mode (ASM)
has been recently discussed in open-RAN (O-RAN) and the
third generation partnership project (3GPP) Release 18 (Rel-
18) onwards [2]–[4]. ASM extends conventional DTX/DRX
mechanisms and enables more fine-grained power control
at the MAC scheduler (MAC-SCH) level, making it a key
candidate for future energy-saving features in base stations.
The proposed AI-based NES integration in this paper also
operates at the MAC-SCH level, which highlights its technical
similarity to ASM. However, the significance of this work
lies not only in its relevance to pre-6G systems, but also in
demonstrating a practical trial approach for applying AI and
NES techniques to currently deployed Rel-15/16 commercial
base stations.

II. SYSTEM ARCHITECTURE OF 5G/PRE-6G GNBS

The 5G NR networks used in this study is an commercial-
ized system developed by the Intelligent RAN SW Research

Fig. 1. Structure of 5G NR Networks

TABLE I. Specification of gNB and UE in the ETRI 5G Testbed [5]

Component Description
gNB 5G NR Rel.15/16, n78 (3.5 GHz), TDD, 100 MHz BW

2×2 MIMO, 24 dBm/port Tx power
Qualcomm. FSM10056 RRH
NXP 20XX H/W platform

UE Samsung Galaxy S20, Snapdragon X55 modem
NSA mode, Band n78 support

Features L2 logging interface (RLC, MAC, MAC-SCH Information)

Section of the Electronics and Telecommunications Research
Institute (ETRI), South Korea, compliant with 3GPP Rel-
15/16 standards and operating in the sub-6 GHz band [5].
Fig. 1 illustrates the basic interconnection between the gNB,
5G core, and user equipment (UE). The gNB consists of RF
front-end, physical layer (PHY), and FAPI interface, along
with higher protocol layers. The L2 software includes PDCP,
RLC, MAC, and MAC-SCH modules, while the L3 software
provides RRC, SDAP, and GTP functionalities. Furthermore,
RRM and operations, administration, and maintenance (OAM)
functions are supported at the L3+ level.

Table I summarizes the specifications of the ETRI 5G NR
base station used in this experiment. Notably, the system is
equipped with a Qualcomm FSM10056 chipset and standard-
ized protocol stacks, enabling interoperability with commercial
UEs such as the Samsung Galaxy S20. This architecture
ensures operation at the level of commercial networks and
provides a practical platform for verifying the applicability of
the proposed AI-NES module.
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Fig. 2. The proposed AI-NES for Pre-6G Mobile Networks

III. AI-NES MODULE DESIGN AND INTEGRATION

The proposed AI-NES architecture directly interacts with
the MAC-SCH module in the L2 layer of the 5G NR gNB,
operating at the TTI level (approximately 0.5 ms). Fig. 2
illustrates the interaction between the L2 SW and the AI-NES
module.

The AI-NES module consists of four functional blocks. The
Traffic Collection Unit gathers real-time traffic information
from the MAC-SCH, such as PRB utilization, RLC SDU
size, and DL throughput. This information is processed by
the Pattern Analysis Unit, which extracts features that reflect
short-term traffic variability. The AI-NES-based Prediction
Unit then applies machine learning or deep learning models
to predict resource demand and usage patterns for the up-
coming slot. Finally, the Resource Control Unit translates the
prediction results into scheduling policies, which are fed back
into the MAC-SCH to optimize resource allocation and reduce
unnecessary power consumption.

Unlike conventional approaches that rely on long-term traf-
fic statistics, the proposed method enables fine-grained, slot-
level prediction and control. Moreover, the architecture can be
integrated into commercial Rel-15/16 gNBs without significant
modifications, thus allowing practical validation in real-world
networks. It is worth noting that, although the proposed AI-
NES framework includes all four functional units, in this
study we implemented only the Traffic Collection and Pattern
Analysis Units. These modules enable TTI-level traffic logging
and statistical analysis, serving as the foundation for validating
the feasibility of fine-grained data acquisition in commercial
gNBs. The AI-based Prediction and Resource Control Units
are left for future integration.

IV. TRAFFIC CHARACTERISTICS AND ENERGY-SAVING
IMPLICATIONS

In this section, we focus on the implemented part of the
proposed AI-NES framework, namely the Traffic Collection
and Pattern Analysis Units. While the full architecture also
includes prediction and control modules, in this study we
limited our implementation to real-time data acquisition and
statistical analysis. To this end, we conducted real-time traf-
fic analysis by streaming a 2160p (4K) YouTube video for
approximately 86 seconds using a commercial UE, while
collecting TTI-level data from the gNB’s L2 software. The first
4 seconds, corresponding to initialization and buffer filling,
were discarded, and thus the analysis is based on the remaining
82 seconds of stable traffic. Fig. 3 illustrates six key indicators
obtained from the measurements.

Fig. 3. Real time YouTube streaming traffic patterns analysis.

A. Measurement and Traffic Characteristics

First, PRB usage exhibits sharp increases during burst peri-
ods, followed by near-zero levels during idle periods. Second,
RLC DL nSDU, collected from the RLC layer, shows bursts of
SDUs arriving intensively within short intervals. Third, the cu-
mulative PRB usage reflects the overall resource consumption,
with steep increments observed in burst phases. Fourth, PRB
usage ratio occasionally reaches 100%, indicating extremely
high instantaneous load. Fifth, TTI-level PRB usage clearly
demonstrates burst/idle patterns even within sub-millisecond
time scales. Finally, DL throughput surges to several hundred
Mbps during burst intervals but drops rapidly in idle intervals.

These results confirm that YouTube traffic inherently ex-
hibits repetitive burst/idle patterns at very short timescales,
which cannot be fully captured by long-term traffic models.
The presence of such idle gaps highlights significant oppor-
tunities for energy saving when advanced sleep modes are
employed in the gNB.
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TABLE II. Estimated Power of FSM10056-Based 2×2 Small Cell
(24 dBm/port) [8], [9]

Mode Coefficient (α) Power (W)
Full load 1.00 40.0

Micro sleep 0.675 33.5
Light sleep 0.55 31.0
Deep sleep 0.23 24.6

TABLE III. Energy Saving Evaluation Results

Metric Baseline ASM-enabled Unit
Avg. Power 40.0 32.85 W
Energy Consumption 3280 2693.5 J (82 s)
Relative Reduction – 18.0 %

Sleep Mode Distribution
Mode Baseline (%) Proposed (%) Duration (s)
Full load 100 17.1 14
Micro sleep – 3.7 3
Light sleep – 76.8 63
Transition – 2.4 2

B. Power Model and Energy-Saving Results

We adopt a simplified power budget model for a commercial
2×2 indoor small cell with 24 dBm per-port output power.
Based on typical vendor specifications, the full-load power
consumption is approximately 40 W [6]–[8]. Using ASM
coefficients reported in [9], the power of each mode is

Pmode = Pfixed + α · PRU, (1)

where Pfixed denotes baseband/synchronization/power-supply
overhead (≈ 20 W), PRU the radio-unit portion (≈ 20 W), and
α the ASM factor (α=1.0 full-load; 0.675 micro; 0.55 light;
0.23 deep [9]). It is noted that Pfixed may vary depending on the
hardware platform, implementation details, and deployment
configuration, and the 20 W value adopted here represents
a typical assumption for indoor small cells.

Given a measured profile of 82 s in total, where the gNB
operated for 14 s in the Full-load state, 3 s in the ASM Micro-
sleep state, 63 s in the ASM Light-sleep state, and 2 s in
Transition, the average power P̄ is derived from the time-
weighted mean of each mode.

P̄ =

∑
i Pi ti∑
i ti

, (2)

and the consumed energy is

E =
∑
i

Pi ti. (3)

For a conservative assumption where the transition interval is
treated as full-load (Ptr = 40 W), inserting Pfull = 40, Pµ =
33.5, Pℓ = 31.0 W and tfull = 14, tµ = 3, tℓ = 63, ttr = 2 s
into (2)–(3) yields

E = 40×14 + 33.5×3 + 31.0×63 + 40×2 = 2693.5 J,

P̄ =
2693.5

82
≈ 32.85 W,

which corresponds to an ≈ 18% reduction compared to
continuous full-load operation (40 W). This demonstrates that
mapping burst/idle intervals to suitable ASM states, informed
by TTI-level prediction, can provide tangible energy savings
under practical traffic.

V. CONCLUSION AND FUTURE WORK

In this work, we demonstrated the feasibility of real-time
traffic analysis for energy-saving opportunities in commer-
cial 5G NR gNBs. By collecting TTI-level traces during
4K YouTube streaming, we observed clear burst/idle traffic
patterns that provide a foundation for short-timescale power
adaptation. Applying ASM to these idle intervals enabled an
estimated 18% reduction in average power consumption for a
2×2 small cell. Unlike conventional approaches relying on
long-term statistics, our framework highlights the potential
of fine-grained, MAC-level control. Moreover, the proposed
data collection structure serves as a preliminary step toward
AI-NES integration, where intelligent prediction modules can
guide ASM decisions in real time. As future work, we plan to
embed AI models directly into gNB platforms to enable on-
device inference and extend analysis to multi-user scenarios.
These efforts will further strengthen the practicality of AI-
driven energy saving in next-generation RANs.
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