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Abstract—Extremely large-scale antenna array (ELAA) is
key enabler of stringent requirement for sixth generation (6G)
mobile networks, such as ultra-high data rate, and terahertz
communications. Due to the extremely large number of antennas
in ELAA, the impinging wavefront must be characterized by
spherical waves, which deviates from the conventional planar-
wave assumption in massive MIMO. As a result, near-field MIMO
communications cannot be neglected in 6G wireless networks.
In this paper, we comprehensively investigate the near-field
communication techniques. First, we present the fundamentals
of near-field communications and the metric to determine the
near-field ranges in typical communication scenarios. Then we
investigate recent works in near-field communications, classifying
them into three categories: channel estimation, beam training,
and CSI feedback schemes developed to address spherical wave-
front effects.

Index Terms—Massive MIMO, Channel Estimation, Beam
Training, CSI Feedback, 6G, Terahertz Communication

I. INTRODUCTION

Massive MIMO provides substantial spectral and energy
efficiency by simultaneously serving multiple users with mas-
sive amount of antennas, while also enabling effective in-
terference suppression through spatial precoding [1]. These
benefits establish massive MIMO as a cornerstone technology
in wireless communications up to the present generation.
Although, to meet the extreme performance requirements of
sixth-generation (6G) wireless communication systems such as
Tbps-level data rates, and ultra-reliable low-latency commu-
nications, the conventional massive MIMO architecture must
undergo substantial enhancements [2]–[4]. Considering this
situation, extremely large-scale antenna arrays (ELAAs) are
needed, providing higher spatial resolution, stronger array
gain. Specifically, deploying terahertz (THz) bands results in
significant path loss and restricted coverage, making traditional
massive MIMO inadequate. In contrast, ELAA systems, com-
prising hundreds to thousands of antennas, provide highly pre-
cise beam-focusing capabilities, thereby effectively mitigating
the substantial path loss associated with the THz range [5].

In ELAA systems, the aperture of the antenna array be-
comes comparable to or even larger than the Rayleigh distance,
defined as 2D2/λ where D and λ represents the size of array
aperture and wavelength. When users are located within this
distance, the impinging signals can no longer be approximated

as planar waves, as assumed in massive MIMO. Instead,
the wavefronts become spherical, with received phase across
antennas influenced by both angle of arrival and propagation
distance. This transition introduces angle–range dependent
channels, fundamentally change the ELAA-enabled 6G sys-
tems [6].

We investigate recent works in near-field communication
systems classifying them into three categories: channel estima-
tion, beam training, and CSI feedback schemes developed to
address spherical wavefront effects [7]–[9]. This categorization
is motivated by the fact that accurate channel estimation is
indispensable for acquiring angle–range dependent channel
parameters, beam training ensures effective beam alignment
under spherical wavefront propagation, and CSI feedback
enables efficient transmission of channel information back
to the base station. While each aspect addresses a distinct
problem, they are inherently interconnected, as the basis
for constructing effective codebook is essential to accurate
channel estimation, beam training, and CSI feedback requires
compact representations of the same codebooks for efficient
reporting.

II. FOUNDATIONS OF NEAR-FIELD COMMUNICATIONS

A. Bounadaries for Communication Regions

Conventionally, the propagation characteristics of RF waves
can be categorized into three distinct regions based on the
radiation distance: the reactive near-field, the radiative near-
field,and the far-field [10]. The reactive near-field region is
the closest area surrounding an antenna, where the elec-
tric and magnetic fields are strongly coupled and predomi-
nantly non-radiative. This region extends up to approximately
0.62

√
D3/λ. In this regime, electromagnetic energy is largely

stored rather than radiated, and the field distribution is highly
non-uniform. Due to these properties, the effective communi-
cation distance in the reactive near-field is extremely limited,
and accurate channel modeling becomes impractical. As a
result, this region is generally not considered in near-field
communication studies.

By contrast, the radiative near-field region (or Fresnel
region) extends beyond the reactive near-field and up to the
Rayleigh distance, typically defined as 0.62

√
D3/λ < r <

2D2/λ. In this regime, the impinging wavefronts become
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spherical rather than planar, and both angle and distance jointly
determine the received phase across antenna elements. These
properties make the radiative near-field particularly relevant
for 6G ELAA and THz systems, enabling advanced beam
focusing, localization, and integrated sensing and communi-
cation.

The far-field region, or Fraunhofer region, is defined for
distances greater than 2D2/λ. In this regime, wavefronts
are well approximated by plane waves, and the electric and
magnetic fields form a uniform transverse electromagnetic
wave orthogonal to the propagation direction. The radiation
pattern of the antenna becomes distance-independent, making
this regime the foundation for most conventional wireless
systems. Accordingly, far-field models underlie the design
of traditional beamforming, channel estimation, and antenna
measurements in existing communication standards such as
4G, 5G massive MIMO, and satellite communications.

B. Far-field and Near-field MIMO Channel Models

In this subsection, we describe the far-field and near-field
channel model under uniform linear array (ULA). When the
user is located beyond the Rayleigh distance, the arriving
signals can be accurately modeled by the planar-wave assump-
tion, and the array response depends only on the angle of
arrival/departure (AoA/AoD). The array steering vector for an
N -element uniform linear array (ULA) is given by

aFF(θ) =

√
1

N

[
1, e−j

2πd
λ θ, . . . , e−j

2πd
λ (N−1)θ

]T
, (1)

where N , d, and −1 ≤ θ ≤ 1 are the number of antenna,
antenna spacing and spatial angle. Accordingly, the channel
vector under L multipath components can be expressed as

hFF =
L∑

ℓ=1

αℓ aFF(θℓ), (2)

where αℓ and θl denote the complex path gain and spatial angle
of the ℓ-th path. This model leads to angular-domain sparsity,
since the channel can be well represented by a small number
of dominant angles corresponding to the limited scattering
paths. In particular, the far-field array steering vectors are well
represented the columns of a discrete Fourier transform (DFT)
matrix U ∈ CN×N , which allows the channel to be expressed
in the beamspace domain as

h̃FF = UHhFF, (3)

where h̃FF denotes its beamspace channel vector. Due to the
angular sparsity, only a few entries of h̃FF corresponding to
the dominant angle bins carry significant power, while the rest
are nearly negligible. This property justifies the widespread use
of DFT-based beamspace channel representations in far-field
massive MIMO systems.

In contrast, when the user located in the radiative region,
the planar-wave approximation is no longer valid, and the
channel must be characterized by spherical wavefronts, which
implies that the propagation distance between the BS and the

TABLE I
COMPARISON BETWEEN FAR-FIELD AND NEAR-FIELD MIMO CHANNEL

MODELS

Far-field MIMO Near-field MIMO
Wave model Planar wave Spherical wave

Channel sparsity Angular-domain Angle–distance domain
Steering vector aFF(θ) aNF(r, θ)
Channel model

∑
αℓaFF(θℓ)

∑
αℓaNF(rℓ, θℓ)

UE becomes a critical parameter. The propagation distance
between the n-th antenna and a user is given by

r(n) =
√
r2 + (nd)2 − 2rndθ, (4)

where r is a distance between center of antenna array and user
[7]. The near-field array steering vector becomes

aNF(r, θ) =
1√
N

[
e−j

2π
λ r(0) , e−j

2π
λ r(1) , . . . , e−j

2π
λ r(N−1)

]T
,

(5)
and the channel vector under L multipath components can be
expressed as

hNF =

L∑
ℓ=1

αℓ aNF(rℓ, θℓ). (6)

where rl and θl means the propagation distance and spatial
angle of the ℓ-th path. This model exhibits angle–distance do-
main sparsity, which fundamentally differs from the angular-
only sparsity of the far-field case and introduces new chal-
lenges for channel estimation, beam training, and CSI feed-
back. Mathematically, the near-field channel can be repre-
sented as

h̃NF = ΨHhNF, (7)

where Ψ ∈ CN×S denotes a polar-domain dictionary con-
structed over angle-distance grids. Such a representation di-
rectly motivates the design of near-field codebook enabling
precise beam focusing and efficient CSI acquisition. The
differences between the far-field and near-field channel models
are summarized in Table I.

III. KEY ENABLING METHODS FOR NEAR-FIELD
COMMUNICATIONS

A. Channel Estimation

Channel estimation serves as the foundation for all sub-
sequent signal processing tasks in wireless communications.
In conventional far-field massive MIMO systems, two pri-
mary approaches have been widely adopted. First, pilot-based
schemes such as LS and MMSE have been widely adopted,
where in particular the MMSE estimator exploits long-term
channel covariance information to improve estimation accu-
racy [11]. Second, compressive sensing (CS)-based methods
leverage the angular-domain sparsity of far-field channels,
formulating channel estimation as a sparse recovery problem
using a DFT-based dictionary [12]. However, these approaches
cannot be directly applied in the near-field regime of ELAA
systems.
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The planar-wave assumption underlying far-field models
breaks down, and the channel exhibits angle-distance domain
sparsity rather than angular sparsity. Moreover, in ELAA sys-
tems with hundreds or even thousands of antennas, acquiring
sufficient channel statistics across all elements becomes practi-
cally infeasible, further limiting the applicability of statistical
estimation methods. As a result, statistical methods become
inaccurate, while conventional CS-based methods with DFT
dictionaries fail to capture the range dependency of spherical
wavefronts.

To address the above problem, polar-domain codebook
based compressive sensing is proposed to exploit the angle-
distance sparsity of spherical wavefront channels [7]. The con-
struction of the polar-domain codebook relies on the Fresnel
approximation [13], where the distance is approximated as

r(n) ≈ r − ndθ +
n2d2

(
1− θ2

)
2r

. (8)

These approximation is derived from the Taylor expansion√
1 + x ≈ 1 + 1

2x− 1
8x

2. In compressive sensing (CS)-based
channel estimation, the recovery performance strongly de-
pends on the correlation of the sensing codebook [14]. A lower
coherence implies that the columns of coherence are more
distinguishable, thereby improving the success probability of
sparse recovery algorithms such as OMP or Basis Pursuit.
Conversely, high coherence leads to ambiguity in identifying
the correct channel support, which severely degrades the
estimation accuracy. Therefore, the column coherence, defined
as µ = max

∣∣aHNF (ri, θi) aNF (rj , θj)
∣∣, should be seleted as

small as possible. The approximated column coherence can
be formulated as in [7]

µ ≈ 1

N

∣∣∣∣∣
N∑

n=0

e
jnπ(θi−θj)+j 2π

λ n2d2

(
1−θ2i
2ri

−
1−θ2j
2rj

)∣∣∣∣∣ . (9)

By defining the distance ring as 1−θ2

r = 1
q , the non-linear

phase term in the coherence is eliminated within each ring,
which enables DFT-based angular sampling similar to the far-
field case. Meanwhile, the spacing between adjacent distance
rings can be controlled by using the Fresnel function to make
the column coherence lower than a given threshold. This
codebook effectively captures the polar-domain sparsity of the
near-field channel, which enables sparse recovery algorithms
such as OMP to achieve reliable performance. However, effi-
cient channel estimation remains challenging, since the polar-
domain codebook constructed from sampled angle–distance
pairs results in a substantially larger size compared to the
conventional angular-domain codebook.

To address these issues, recent works can be categorized
into the following directions:

• Distance-specific dictionary design: constructing adap-
tive dictionaries that explicitly capture the distance-
dependent phase variations of near-field channels [15],
[16].

• Side-information aided estimation: incorporating addi-
tional knowledge such as user location or partial chan-
nel statistics to enhance estimation accuracy and reduce
codebook size [17], [18].

• Parametric channel estimation: directly estimating
physical parameters such as angle and distance using
geometric channel models [19].

• Learning-based methods: employing deep neural net-
works or model-driven learning frameworks to leverage
structural sparsity and nonlinear channel features [20]–
[22].

B. Beam training

Beam training is a practical strategy to find strongest
communication link without requiring full channel state in-
formation (CSI). Instead of explicitly estimating the channel,
the BS and user sequentially calculate the correlation between
channel and candidate beamforming from a predefined code-
book. This approach significantly reduces pilot overhead and
computational cost compared to exhaustive channel estimation.

It is important to note the fundamental distinction between
beam training and channel estimation. Channel estimation
attempts to reconstruct the complete channel vector (or matrix)
h. Beam training, on the other hand, bypasses full CSI
acquisition and directly identifies a srongest spatial direction
of channel through beam sweeping. Thus, channel estimation
yields CSI but at high overhead, whereas beam training
provides only the optimal beam direction with considerably
lower complexity.

The primary objective of beam training is to select a trans-
mit beam that maximizes a performance metric, commonly
the received signal strength. Mathematically, given a codebook
W = {w1, . . . ,wNc

}, the optimal beam is chosen as

w⋆ = arg max
w∈W

∣∣hHw
∣∣2 , (10)

where h denotes the effective channel vector. This optimiza-
tion ensures that the selected beam provides the strongest
possible link under given channel conditions.

In conventional far-field systems, beam training is per-
formed over an angular-domain codebook. The array response
depends only on the angle of arrival, and discrete Fourier
transform (DFT)-based codebooks are sufficient for sweeping.
In practice, the 5G New Radio (NR) standard specifies two
types of beam training procedures:

• Type-I : which is designed for low-rank transmission,
typically rank-1, where each codeword corresponds to a
directional beam on a predefined angular grid.

• Type-II : which is designed for higher-rank transmission,
where multiple beams are simultaneously combined to
capture multiple spatial paths.

Type-I training is more robust and incurs lower feedback
overhead, while Type-II training enables finer beam adaptation
at the cost of higher signaling overhead.

However, the planar-wave assumption no longer holds in
near-field systems as explained above. This gives rise to
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a two-dimensional codebook indexed by both angular and
distance parameters. Consequently, near-field beam training
is inherently more challenging, as the codebook size grows
significantly and novel hierarchical designs are required to
balance accuracy and training overhead. To design the hier-
archical beam training for XL-MIMO, Shi et al [8] provide
the three fundamental criteria as follows:

• Intra-layer : In each hierarchical layer, the union of all
codeword coverage regions should fully cover the entire
possible channel

• Inter-layer : The coverage region of any codeword in the
l-th layer should be completely contained in the union of
several finer codeword regions in the (l + 1)-th layer

• Scalability : Within each layer, all codewords should be
generated from a reference codeword through rotation

To satisfy the above three criteria, the hierarchical beam
training is constructed in the polar domain by representing
each beam in the slope-intercept domain. Specifically, the
phase term at each antenna element in (5) can be expressed
as

θn = θ +
λ(1− θ2)

4r
n, (11)

when antenna spacing d is equal to half of the wavelength λ.
Then, the near-field steering vector can be expressed as

aNF(r, θ) =
1√
N

e−jπr
[
ejπθ0 , ejπθ1 , . . . , ejπθN−1

]T
(12)

Above equation (11) corresponds to a linear function with
slope k =

λ(1−θ2
0)

4r0
and intercept b = θ0. By transforming

the polar domain into the (k, b) domain, the codebook can be
systematically designed such that: (i) each hierarchical layer
fully covers the entire slope-intercept space, (ii) the coverage
region of a coarse beam is refined by multiple beams in the
next layer, and (iii) all codewords are generated via beam
rotation to preserve scalability. Based on this slope-intercept
domain representation, a codebook structure and a hierarchical
beam search procedure are developed, which enable efficient
near-field beam training while maintaining the coarse-to-fine
search property.

Despite the advantages of the slope-intercept domain based
hierarchical beam training, several challenges remain for prac-
tical implementation such as compatibility with the existing
3GPP codebook standards, as the near-field structure differs
significantly from the conventional far-field DFT-based design.
To overcome the challenges of extending conventional beam
training methods into the near-field, one promising direction
is the use of planar wave expansion [23]. The planar wave
expansion provides a unified framework for characterizing
both far-field and near-field propagation in XL-MIMO sys-
tems. Instead of treating the near-field channel as a purely
spherical wave phenomenon, it represents the channel as a
superposition of multiple plane waves arriving from different
directions. This perspective allows the near-field channel to be
approximated within the same angular domain framework as
the far-field, thereby enabling the reuse of conventional DFT-
based codebooks and beam training techniques.

C. CSI Feedback

In time division duplex systems, CSI acquisition is facil-
itated via channel reciprocity after estimating the downlink
or uplink channel. However, in frequency division duplex
systems, where uplink and downlink operate on different
frequencies, CSI must be explicitly fed back from the UE
to the BS. Therefore, CSI feedback schemes plays a crucial
role and extensive research has been conducted in the far-
field context. A straightforward method for CSI feedback is
to quantize and transmit the estimated channel coefficients,
but this requires an excessive number of bits. Therefore,
codebook-based index feedback has become the dominant
approach in practical systems.

Unlike channel estimation, the main requirement of CSI
feedback is that for any possible channel realization, there
should exist at least one codeword that maintains sufficiently
high correlation with the true channel. This requirement can
be expressed by the following objective:

max
C

min
h∈H

max
c∈C

|hHc|2, (13)

where C denotes the codebook and H represents the channel
set.

Classical approaches include Grassmannian line packing,
random vector quantization, and Lloyd-Max algorithm [24],
[25], all of which aim to design codebooks with low mutual
coherence on the complex unit sphere. However, due to the
near-field effect, the steering vector depends on both angle
and distance, which makes it difficult to directly apply the
above codebook-based feedback methods that are designed
for angular-domain sparsity. To this end, [9] analyzes the
codebook quantization performance of near-field channels for
both the ULA and the UPA, and subsequently proposes a novel
codebook design which gaurantees the minimum correlation
φ. Specifically, the correlation between adjacent codewords
in the slope-intercept (k, b) domain is approximated using
a polynomial formula, and a fitting function is derived with
respect to the required minimum correlation φ.

f (∆k,∆b) ≈ p∆k2N4 + q∆b2N2 + 1 (14)

where the coefficients p and q can be obtained by the least
square method.

IV. CONCLUSIONS

In this paper, we have provided a comprehensive overview
of channel estimation, beam training, and CSI feedback for
near-field XL-MIMO systems. We first highlighted that con-
ventional DFT-based angular-domain approaches are inade-
quate in the near-field regime due to the presence of distance-
dependent phase variations. To address this issue, a polar-
domain representation was introduced, where distance rings
enable DFT-based angular sampling and facilitate efficient
channel estimation. We further discussed the fundamental
differences between beam training and channel estimation,
emphasizing that beam training aims to directly identify
optimal beams rather than reconstructing the full channel.
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Moreover, hierarchical beam training strategies in the polar
domain were introduced, which effectively reduce training
overhead while maintaining high resolution. For CSI feedback,
we reviewed feedback aware codebook design where adjacent
codeword correlations can be approximated by polynomial
fitting functions to ensure reliable quantization performance.
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