
A Survey on Digital Twin-Assisted Task Offloading
in Remote IoT Networks

Ayalneh Bitew Wondmagegn, Ton That Tam Dinh, Thwe Thwe Win, Dongwook Won and Sungrae Cho
School of Computer Science and Engineering, Chung-Ang University, Seoul 06974, South Korea

Email: {ayalneh, tttdinh, ttwin, dwwon}@uclab.re.kr, srcho@cau.ac.kr

Abstract—The integration of Digital Twin (DT) technology with
unmanned aerial vehicle (UAV)-enabled mobile edge computing
(MEC) introduces a transformative paradigm for intelligent task
offloading in remote Internet of Things (IoT) environments. This
survey investigates the pivotal role of DT in enhancing task
offloading efficiency within UAV-MEC networks by enabling real-
time virtualization, predictive analytics, and intelligent decision-
making. We review recent advances in algorithmic frameworks
that leverage DTs for optimized task distribution, resource allo-
cation, and UAV coordination. Furthermore, the paper identifies
key challenges and outlines promising future directions for
developing robust, low-latency, and energy-efficient offloading
solutions. This work provides valuable insights into the design
of intelligent, adaptive, and resilient DT-assisted task offloading
architectures for next-generation UAV-MEC-enabled IoT systems.

Index Terms—Digital twin, Unmanned aerial vehicle, Mobile
edge computing, Task offloading, Remote IoT.

I. INTRODUCTION AND MOTIVATION

A. Introduction

The exponential growth of IoT devices has transformed
various sectors by enabling real-time data collection, pro-
cessing, and communication. Applications such as wearable
health monitors, smart control systems, traffic sensors, and
environmental monitoring devices are driving the demand
for computation-intensive services, including online gaming,
facial recognition, virtual reality, augmented reality, and mixed
reality [1]. However, deploying such devices in remote or
harsh environments presents critical challenges due to their
limited computing capacity, constrained bandwidth, and re-
stricted energy availability.

To address these limitations, the integration of IoT devices
with UAV-assisted MEC systems has emerged as a promising
solution [2]–[6]. UAV-MEC systems provide low-latency, on-
demand computational services near the data source, making
them particularly suitable for dynamic and mission-critical
scenarios such as disaster relief, environmental surveillance,
and remote monitoring. By enabling resource-constrained IoT
devices to offload computationally heavy tasks, these systems
can significantly reduce latency, conserve energy, and improve
overall responsiveness [7].

Nevertheless, optimizing task offloading in UAV-MEC net-
works remains a complex problem. The high mobility of
UAVs, their limited onboard energy, and finite computational
resources create dynamic and constrained environments that
require intelligent and adaptive decision-making. In time-
sensitive applications like emergency response, rapid and ac-

curate offloading strategies are essential to meet strict latency
and energy requirements [8].

In this context, DT technology has emerged as a trans-
formative enabler. By leveraging real-time sensing, histori-
cal data, and intelligent modeling, DTs create high-fidelity
virtual replicas of physical entities—such as UAVs and IoT
devices—enabling continuous monitoring, simulation, and op-
timization of system performance [2], [9]. Within UAV-MEC
frameworks, DTs facilitate the development of proactive,
context-aware task offloading strategies that adapt to environ-
mental changes and resource fluctuations in real time.

This paper presents a comprehensive survey of recent
advances in DT-assisted task offloading within UAV-MEC
networks, focusing on their application to remote IoT de-
ployments. It aims to offer a systematic understanding of the
enabling technologies, design methodologies, key challenges,
and open research issues in this emerging area.

B. Motivation

The increasing adoption of IoT devices in remote and
infrastructure-deficient environments highlights the urgent
need for intelligent, energy-efficient, and low-latency task
execution frameworks. Traditional cloud-based architectures
are often inadequate in such settings due to their dependency
on stable backhaul connections, leading to excessive latency
and poor reliability [1]. MEC addresses this gap by bringing
computational resources closer to the data source, thereby
reducing transmission delays and improving responsiveness.
Meanwhile, UAVs introduce additional flexibility by serving
as mobile MEC platforms capable of adapting to changing
network topologies and user distributions.

Despite their potential, UAV-MEC networks face significant
challenges. These include UAV mobility, limited onboard
resources, and dynamic user demands, all of which complicate
the design of efficient task offloading strategies. In response,
Digital Twin technology offers a powerful paradigm for dy-
namic optimization. By creating virtual models of UAVs, IoT
devices, and the operating environment, DTs support real-time
decision-making through continuous simulation, predictive an-
alytics, and adaptive control.

While research interest in DT-assisted UAV-MEC networks
is growing, the field remains fragmented, and a unified un-
derstanding of design frameworks, algorithmic solutions, and
system-level trade-offs is still lacking. This survey seeks to
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bridge that gap by exploring how DTs can enhance coordina-
tion, efficiency, and intelligence in task offloading for remote
IoT networks.

This survey aims to fill this gap and makes the following
key contributions:

• We provide a concise technical overview of UAV-MEC
systems and the role of Digital Twin technology in
enabling intelligent task offloading.

• We summarize algorithmic techniques—such as rein-
forcement learning, heuristic optimization, and cluster-
ing—that support DT-driven offloading decisions.

• We identify critical challenges in DT-assisted task of-
floading, including UAV trajectory planning, real-time re-
source allocation, and synchronization under uncertainty.

• We highlight future research directions such as
lightweight DT modeling, multi-objective optimization,
and integration with next-generation 6G networks.

II. BACKGROUND AND ENABLING TECHNOLOGIES

A. UAV-MEC Architecture
One of the defining objectives of 6G networks is to provide

ubiquitous communication and computing coverage across
diverse and dynamic environments. However, such pervasive
access cannot be achieved through terrestrial infrastructure
alone. In many scenarios—such as disaster-stricken zones
affected by earthquakes or floods, and remote areas like mar-
itime regions, deserts, or dense forests—traditional terrestrial
MEC infrastructure becomes impractical or unavailable due to
factors such as infrastructure damage, high deployment costs,
and limited base station coverage.

To address these limitations, UAV-assisted MEC has
emerged as a critical enabler for communication and task
offloading in such environments. UAVs offer high mobil-
ity, rapid deployment, and cost-effective, flexible operation,
making them well-suited for delivering on-demand computing
services to edge devices in infrastructure-deficient areas [10],
[11]. By functioning as airborne MEC nodes, UAVs can bring
computational resources closer to end-users, thus reducing
latency and supporting timely decision-making—especially in
time-sensitive applications such as survivor detection or real-
time video preprocessing during disaster response missions.

Moreover, UAV-based computing networks are not limited
to static disaster scenarios. Their deployment is equally valu-
able in vehicular edge computing, where UAVs can dynami-
cally supplement or replace roadside units, adjusting to real-
time traffic patterns and environmental conditions to ensure
seamless task offloading [12], [13]. Other aerial platforms,
such as airships and balloons, further enhance the scalability
and coverage of airborne edge networks.

The integration of UAVs with MEC offers several key
benefits:

• Latency and energy reduction through optimized task
offloading.

• Edge caching support for faster content delivery.
• Ultra-reliable low-latency communications (URLLC) for

mission-critical IoT services.

• Extended coverage and computing power for B5G/6G use
cases, including smart farming, remote monitoring, and
military operations.

Additionally, the line-of-sight characteristic of ground-to-air
links enhances the efficiency and reliability of UAV-assisted
data transmissions [14], making UAV-MEC particularly suit-
able for delay-sensitive and energy-constrained applications.

Despite these advantages, UAV-MEC systems face signif-
icant challenges. The mobility of UAVs and the dynamic
behavior of ground users result in fluctuating computational
demands, variable user densities, and frequently changing
UAV trajectories. These complexities hinder global optimiza-
tion and can compromise system efficiency, stability, and even
security [3].

To overcome these challenges, UAV-integrated MEC plat-
forms enable resource-constrained IoT devices to offload tasks,
thereby reducing end-to-end latency, easing local processing
loads, and enhancing responsiveness—particularly in remote
or bandwidth-limited environments. However, managing such
UAV-MEC networks necessitates adaptive resource allocation,
energy-aware operation, and resilient control mechanisms.
Achieving robust performance under these dynamic conditions
requires the deployment of intelligent optimization and coor-
dination strategies that can support real-time decision-making
and reliable service delivery.

B. Digital Twin

Digital twin technology has emerged as a transformative
paradigm that bridges the physical and digital worlds. By
enabling the real-time virtualization of physical entities and
environments, DT facilitates intelligent communication, coor-
dination, and decision-making across these two domains [4],
[15], [16]. Through continuous bi-directional interaction, DTs
support real-time monitoring, simulation, and predictive an-
alytics, allowing systems to respond proactively to changing
conditions. This capability makes DT a powerful tool for adap-
tive and intelligent network resource management, particularly
in dynamic and resource-constrained environments.

In the context of UAV-assisted UAV-MEC networks, DT
architecture is typically composed of four core modules [17]:

• Physical Layer: Includes real-world UAVs, IoT devices,
and the surrounding environment where computation
tasks originate and are executed.

• Digital Twin Network: A centralized server constructs
and maintains a high-fidelity virtual replica of the phys-
ical system, continuously updated with real-time data.

• Machine Learning Module: Processes state information
from the DT model to make intelligent decisions, such
as adaptive UAV deployment and task offloading.

• Communication Interface: Enables seamless data ex-
change between physical and digital layers using 4G/5G,
satellite, or wireless communication technologies.

DT technology has demonstrated significant potential in
various aspects of networking and communications, including
system modeling, physical data processing, cloud computing,
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Fig. 1. DT-assisted Offloading Model.

and edge computing [18]. As a result, DT has garnered
growing interest among researchers [19]–[22]. For instance,
the work in [19] investigates DT-assisted task offloading in
MEC to minimize power consumption and processing delay.
Similarly, [20] proposes a DT-enabled framework to reduce
offloading latency in edge networks. In the context of beyond
5G smart grid systems, [21] employs DT for intelligent access
control and authorization. Moreover, studies such as [22] lever-
age DT to enhance edge network performance in Industrial
Internet of Things (IIoT) scenarios. These representative works
highlight the wide-ranging applicability and transformative
potential of DT in next-generation networked systems.

Overall, Digital Twin technology is poised to become a
foundational element in 6G and beyond, enabling context-
aware, real-time, and adaptive systems that operate efficiently
across dynamic and complex environments. Fig. 1 illustrates
a DT-assisted offloading model where the Digital Twin Layer
continuously receives real-time updates from the Physical
Layer (including UAVs and UDs) and provides optimized
strategies and decisions. In the absence of a functional ground
base station, the UAV acts as a mobile MEC server, en-
abling efficient task offloading from remote user devices. This
feedback loop enhances adaptability and decision-making in
dynamic or infrastructure-limited environments.

III. ROLE OF DT IN UAV-MEC TASK OFFLOADING

DT technology plays a pivotal role in enhancing task
offloading within UAV-assisted MEC systems. In such net-
works, UAVs function as mobile edge servers that deliver
computational services to UDs, especially in remote, disaster-
prone, or dynamic environments. However, efficient task of-
floading remains challenging due to UAV mobility, resource
limitations, fluctuating channel conditions, and the need for
timely decision-making.

To address these issues, DTs serve as intelligent enablers
that virtualize physical entities and network dynamics in real
time, providing a basis for predictive analytics and adaptive
optimization. The key roles of DT in UAV-MEC task offload-
ing are as follows [2], [5], [6], [15], [23]–[25]:

• Real-time Virtual Representation: DTs maintain high-
fidelity digital replicas of UAVs, UDs, and the sur-
rounding environment to enable continuous monitoring,
control, and synchronization.

• Predictive Analytics: DTs forecast UAV trajectories, sys-
tem dynamics, channel conditions, and task workloads,
enabling proactive and intelligent decision-making.

• Offloading Strategy Optimization: By simulating alterna-
tive strategies in the digital space, DTs assist in selecting
optimal offloading policies under constraints such as
latency, energy, and computation capacity.

• Adaptive Resource Allocation: DTs facilitate dynamic
reallocation of computational, communication, and en-
ergy resources by analyzing real-time context and user
demands.

• Mobility and Coverage Management: Through accurate
mobility modeling, DTs ensure service continuity and op-
timize UAV positioning in highly dynamic environments.

• Latency Reduction: DTs support pre-coordination of of-
floading tasks, reducing synchronization delays and im-
proving system responsiveness.

• Resilience Under Uncertainty: DTs improve system ro-
bustness in volatile, infrastructure-limited scenarios by
enabling virtual testing, rapid reconfiguration, and fault
prediction.

• Intelligent Control Integration: When combined with
AI/ML models, DTs support autonomous UAV trajectory
planning, scheduling, and offloading decisions.

• Scenario Simulation and Testing: DTs offer a cost-
effective and safe platform for evaluating “what-if” sce-
narios and refining strategies without disrupting physical
operations.

IV. PROBLEM SOLVING APPROACHES IN DT-ASSISTED
TASK OFFLOADING

Recent research on DT-assisted task offloading has intro-
duced a diverse range of intelligent algorithms and com-
putational methodologies to address the complex challenges
posed by UAV-MEC environments. These challenges include
constrained UAV resources, dynamic network conditions,
mobility-induced uncertainties, and stringent latency and en-
ergy requirements. The adopted problem-solving approaches
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can be broadly classified into four categories: optimization-
based methods, clustering and scheduling algorithms, predic-
tive modeling, and reinforcement learning-based algorithms.

A. Optimization-Based Algorithms

Traditional optimization techniques are widely employed
to solve joint decision-making problems in DT-enabled UAV-
MEC systems. These methods aim to determine optimal or
near-optimal solutions under constraints such as delay, power,
and computation capacity. Mixed integer nonlinear program-
ming is frequently used to model both discrete and contin-
uous variables, while difference of convex programming en-
ables tractable handling of non-convex problems. Branch-and-
Bound algorithms deliver exact solutions for smaller problem
instances, and heuristic methods such as genetic algorithms
and particle swarm optimization offer scalable alternatives
for large-scale systems. For example, in [2], a difference-of-
convex penalty-based algorithm (DCPA) is proposed alongside
benchmark methods like branch-and-bound (B&B) and relaxed
heuristic algorithm (RHA). The study highlights how DT
integration enhances optimization, especially when coupled
with K-means-based UAV positioning. The framework aims
to reduce latency and increase the number of connected
IoT devices by jointly optimizing UAV placement and IoT
association in energy-harvesting UAV-MEC systems.

B. Clustering and Scheduling Algorithms

Clustering and scheduling techniques are integrated into DT
frameworks to optimize task distribution, UAV deployment,
and resource management. Clustering algorithms such as K-
Means and DBSCAN classify devices or tasks based on
proximity, resource demand, or similarity, aiding in efficient
service coverage and UAV positioning. Scheduling algorithms
like priority-based scheduling and earliest deadline first (EDF)
prioritize task execution based on deadlines or quality of
service needs, which is critical in latency-sensitive appli-
cations. In [25], K-means clustering is employed for UAV
deployment, while an alternative optimization (AO) strategy
refines power allocation, offloading ratios, and processing
rates. The study focuses on minimizing end-to-end latency and
achieving URLLC by jointly optimizing communication and
computation variables.

C. Predictive Modeling and Estimation

DT-based systems leverage predictive modeling for proac-
tive resource management and task offloading. Estimation
methods like Kalman Filters and Bayesian Inference are used
to predict UAV positions, channel quality, and device states
in real time. Time-series forecasting approaches—such as
ARIMA and long short-term memory networks—are used
to anticipate traffic load, mobility patterns, and future task
demands. In [5], a multi-armed bandit framework is employed,
where stability-aware UCB-based online matching algorithm
(SUOMA) is applied for dynamic task offloading. This model
effectively addresses uncertainty in disaster response scenar-
ios where there is a mismatch between UAV computational

capabilities and urgent ground user needs. The DT-enabled
framework ensures robust matching through online estimation
and feedback.

D. Reinforcement Learning (RL)-Based Algorithms

Reinforcement learning has become a powerful tool in DT-
assisted task offloading due to its ability to handle high-
dimensional, time-varying, and partially observable environ-
ments. These algorithms utilize real-time feedback from the
DT to continuously refine policies for task offloading, UAV
trajectory control, and resource allocation. Common RL tech-
niques include deep Q-network (DQN), double DQN (DDQN),
proximal policy optimization (PPO), deep deterministic policy
gradient (DDPG), and soft actor-critic (SAC). For instance, in
[17], a DQN-based algorithm is proposed alongside a greedy
heuristic to optimize UAV deployment and offloading deci-
sions using DT-generated data. The results demonstrate that
DT-enhanced approaches significantly outperform traditional
methods in QoS and system performance.

Similarly, [26] proposes a DT-driven offloading strategy
for UAV-MEC systems under uncertain conditions, using a
DDQN algorithm to jointly optimize UAV trajectory, terminal
association, and power allocation with the goal of minimizing
energy consumption.

In [23], a markov decision process (MDP) is used to model
UAV trajectory and resource allocation in a vehicular edge
computing scenario. A PPO-based deep reinforcement learning
algorithm is applied to minimize energy consumption while
ensuring low-latency execution.

The dynamic digital twin edge air-ground architecture in-
troduced in [6] uses a DDPG algorithm to address a complex
joint optimization problem involving IIoT device association,
UAV trajectory, and offloading decisions. This approach yields
significant gains in both energy efficiency and delay minimiza-
tion.

In [27], the authors propose a DT synchronization frame-
work incorporating semantic communication. A DRL-based
algorithm with actor-critic architecture is used to minimize
synchronization latency and energy consumption. The frame-
work achieves notable performance gains, including up to
57.14% reduction in synchronization energy.

Lastly, [24] presents a soft actor-critic (SAC)-based ap-
proach to jointly optimize synchronization strategy, trans-
mission power, and computational resource allocation. The
study addresses mobility-induced uncertainties and focuses on
minimizing the average DT synchronization latency across
time-varying UAV-MEC systems.

E. Critical Trade-off Analysis

The above categories offer complementary strengths but
also exhibit trade-offs that must be considered when selecting
suitable approaches.

• Computational complexity: Optimization-based algo-
rithms (e.g., DCPA, B&B) provide near-optimal solu-
tions but are computationally intensive, limiting their
applicability in real-time UAV-MEC scenarios. RL-based
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TABLE I
SUMMARY OF DT-ASSISTED TASK OFFLOADING APPROACHES IN UAV-MEC NETWORKS

Algorithm Used DT Role Objective Key Features Ref.
Optimization-Based Algorithms
(e.g. DCPA compare with B&B
and RHA)

Real-time simulated
environment

Minimize latency and
maximize the associ-
ated IoT devices

Optimizing UAV placement and IoT device asso-
ciation, with energy harvesting.

[2]

Clustering and Scheduling (K-
means clustering and AO)

Simulation Minimize end-to-end
latency

Jointly optimizes power, offloading factor, and pro-
cessing rates of IoT and MEC-UAV servers. [25]

Predictive Modeling (SUOMA) Real-time prediction Minimize uncertainty-
induced delay

Online matching with prediction under uncertain
network states.

[5]

Greedy heuristic and DQN Algo-
rithm

Virtual modeling Minimize distance and
delay

DT-guided UAV deployment and task prioritization
for POI areas. [17]

DRL- DDQN algorithm Predict the network
state accurately

Minimize energy con-
sumption

Jointly optimize MTU association, UAV trajectory,
transmission power, and computation capacity. [26]

DRL-based PPO Algorithm Not specified Minimize energy con-
sumption

Joint UAV trajectory and resource management for
vehicular networks. [23]

DRL-based DDPG Algorithm Real-time control
and state prediction

Minimize energy con-
sumption

Joint optimization of UAV trajectory, IIoT device
association, offloading, and resource allocation.

[6]

Lyapunov optimization and DRL-
based Algorithm

Synchronization Minimize synchroniza-
tion latency

Semantic communication-based DT synchroniza-
tion for UAV-MEC. [27]

DRL-based SAC Algorithm Synchronization Minimize average DT
synchronization latency

Jointly optimizing the synchronization strategy,
transmission power, and resource allocation for
both UDs and BS.

[24]

methods (e.g., PPO, SAC), on the other hand, enable
online adaptability but incur high training overhead and
convergence challenges.

• Data requirements: Predictive modeling approaches
(e.g., SUOMA) rely heavily on historical and real-time
data for accurate forecasting, while RL-based methods
leverage DT-generated simulated data, reducing depen-
dence on costly real-world datasets.

• Scalability and adaptability: Heuristic optimization
techniques scale well but often sacrifice optimality,
whereas RL approaches achieve strong adaptability in dy-
namic and uncertain environments such as UAV trajectory
planning and IoT task scheduling.

In summary, the integration of DT enhances all these
approaches by enabling real-time simulation, proactive control,
and semantic communication, thereby significantly improving
energy efficiency, latency, and reliability in UAV-MEC task
offloading. Table 1 provides a consolidated comparison of
representative DT-assisted task offloading approaches, high-
lighting algorithms, DT roles, objectives, and key features.

V. CHALLENGES, TRENDS, AND FUTURE DIRECTIONS

DT-assisted task offloading in UAV-MEC networks holds
great promise for improving computational efficiency, respon-
siveness, and adaptability in dynamic environments. However,
several key challenges must be addressed to unlock its full
potential. A primary difficulty lies in the high computational
and communication overhead of constructing and maintaining
high-fidelity DT models. Continuous real-time synchronization
consumes significant energy and bandwidth, often exceeding
the resource budgets of UAVs and IoT devices. Synchroniza-
tion delays can lead to outdated digital replicas, resulting in
suboptimal or erroneous offloading decisions.

The inherent mobility of UAVs and dynamic network
topologies further complicate task scheduling and resource al-
location. Fluctuating channel quality, shifting coverage zones,

and unpredictable user demands introduce uncertainty that
requires robust, real-time adaptation. Scaling DT systems to
accommodate large numbers of UAVs, IoT devices, and con-
current tasks without overwhelming computational or band-
width resources also necessitates lightweight modeling and
distributed coordination. Moreover, security and privacy re-
main critical concerns, as continuous data collection and
modeling expose vulnerabilities in mission-critical or adver-
sarial environments. The integration of AI/ML intensifies
these issues, as reliable training data, fast convergence, and
explainability must be achieved under constrained resources.

To address these challenges, future research must advance
lightweight, scalable DT architectures tailored to UAV-MEC
networks. Promising directions include uncertainty-aware op-
timization frameworks for managing physical–virtual inter-
actions, collaborative task offloading across heterogeneous
UAVs, and the use of generative models (e.g., GANs and dif-
fusion models) to enhance DT fidelity through contextual data
generation such as spectrum maps or oblique imagery. Priority-
aware scheduling mechanisms, particularly for delay-sensitive
scenarios like disaster relief, are also essential. Furthermore,
semantic communication offers significant potential to reduce
synchronization overhead by transmitting only task-relevant
features instead of raw data, thereby improving efficiency.

Looking ahead, several research trends are poised to shape
the evolution of DT-assisted UAV-MEC systems. Integration
with 6G and beyond will be pivotal, as technologies such as
reconfigurable intelligent surfaces (RIS), terahertz (THz) com-
munication, and integrated sensing and communication will
enable high-capacity, low-latency DT services. Multi-UAV
collaborative frameworks will become increasingly important
for coordinating large-scale and heterogeneous UAV swarms
in complex IoT environments. In parallel, AI-augmented
lightweight DTs leveraging foundation models and generative
AI will provide context-aware modeling and predictive op-
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timization while maintaining compact structures suitable for
resource-limited platforms. Finally, hybrid algorithmic frame-
works that combine optimization, reinforcement learning, and
predictive modeling are expected to balance computational
complexity, adaptability, and real-time performance, driving
the practical deployment of intelligent, scalable DT-assisted
UAV-MEC networks.

VI. CONCLUSION

This paper presents a comprehensive survey of the state-
of-the-art in DT-assisted task offloading within UAV-MEC
networks, with a particular focus on supporting computation in
remote, infrastructure-limited, or disaster-prone environments.
By enabling real-time virtualization, predictive analytics, and
intelligent control, DTs significantly enhance the adaptabil-
ity, responsiveness, and efficiency of offloading decisions
and resource management. The survey explores key enabling
technologies, algorithmic frameworks, major challenges, and
promising research directions. Although notable advancements
have been achieved through optimization, clustering, predic-
tive modeling, and reinforcement learning approaches, unre-
solved issues such as uncertainty quantification, coordination
among heterogeneous UAVs, semantic-aware synchronization,
and cross-layer co-design persist. Future research in these
areas is critical to unlocking the full potential of DTs for
achieving low-latency, energy-efficient, and reliable task ex-
ecution in dynamic UAV-MEC scenarios.
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