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Abstract—Intent-Based Networking (IBN) enables goal-driven
control of systems, yet its application to indoor autonomous
driving remains limited. This paper presents a perception-centric
extension of the framework for Interface to In-Network Comput-
ing Functions (I2ICF) using a ROS2-based robotic platform. To
ensure stable real-time operations, we resolve conflicts between
ROS2 and Flask with a multi-processing architecture, while a
fine-tuned YOLOV8s model improves object detection in complex
indoor environments. The system, composed of an Intelligent
Moving Object (IMO), a desktop client, and a controller. It
transforms raw sensor data into semantically rich records for
monitoring and analysis. Results demonstrate the reliable trans-
lation of user intents into high-level policies for safe and efficient
indoor navigation.

Index Terms—Intent, I12ICF, Kubernetes, Moving Object, Ob-
ject Detection

I. INTRODUCTION

The advent of Intent-Based Networking (IBN) [1] has
opened new opportunities for simplifying network and system
management by allowing users to specify what they want
rather than how their intents should be implemented. Tra-
ditionally, intent translation frameworks have been designed
for large-scale telecommunication networks, focusing on pol-
icy orchestration across heterogeneous devices. However, as
computing capabilities increasingly migrate toward network
edges, enabling seamless control and manipulation of edge
devices such as autonomous robots and Intelligent Moving
Objects (IMOs) has become necessary. The Interface to In-
Network Computing Functions (I2ICF) [2] [3] in the Internet
Engineering Task Force (IETF) proposed a framework for a
user to control and manage a Moving Object (MO) according
to a user intent. While advances in autonomous driving tech-
nology have enabled the use of Mobility Objects (MOs)-such
as robots and robot cars, enhancing the safety and efficiency
of autonomous driving in indoor environments requires a tight
integration of sensor data collection and transmission, high-
level policy control, and real-time monitoring. Therefore, a
reliable system for intent-based autonomous driving control
that meets the I2ICF requirements is needed.

This paper aims to extend the applicability of the I2ICF
framework by maintaining its structure and advantages while
adding functions required for indoor autonomous driving, such
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as object detection and odometry information transmission to
an edge server. To achieve this, we applied a ROS2-enabled
robot car platform equipped with multiple onboard sensors
(e.g., camera and odometry) as an IMO, since it provides an
accessible yet sufficiently complex environment for validating
intent-driven control. This platform supports real-time sensor
data transmission to an edge server and integrates seamlessly
with our object detection function using a YOLOvVS8s fine-
tuned model [4] specialized for indoor environments, thereby
enabling safer and more efficient indoor navigation.

While advances in autonomous driving technology have
enabled the use of MOs, the unique constraints of indoor
environments—such as narrow corridors, irregular obstacles,
and inconsistent lighting—pose significant challenges for per-
ception and navigation. Achieving safety and efficiency in such
scenarios requires robust object detection, accurate odometry,
and real-time data transmission, and monitoring. However,
existing I2ICF-oriented designs remain limited in two key
aspects:

1) System-level instability: Middleware conflicts (e.g.,
ROS2-Flask integration) often lead to blocking commu-
nication and degraded responsiveness.

2) Perception robustness: Pre-trained detection models lack
adaptation to the specific visual and structural features
of indoor environments, resulting in unreliable decision-
making.

Therefore, a reliable intent-based robotic control system that
resolves these limitations and aligns with I2ICF requirements
is critically needed.

To extend the applicability of the I2ICF framework into
indoor autonomous driving, we implemented a ROS2-enabled
robotic platform (i.e., LIMO ROS2-based robot car) [5]
equipped with a camera and odometry sensors. The platform
streams real-time sensor data through a Flask-based transmis-
sion server integrated with a multi-processing architecture,
which decouples a ROS2 subscriber from a web server to
ensure stable and parallel execution.

On a client, a fine-tuned YOLOVS8s model specialized for
indoor environments performs object detection, producing
semantically rich perception outputs. These outputs are syn-
chronized with odometry data and encapsulated into JSON
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payloads, including object metadata and annotated images.
The controller server archives records including time-aligned
JSON logs and JPEG images, enabling monitoring, assurance,
and post-mission analysis.

The main idea of this paper is a modular system for
autonomous data acquisition, designed to operate within an
intent-based framework. The system enables a user to define
an intent such as a high-level data collection mission (e.g.,
"survey the main corridor for safety equipment"), which the
robotic platform then fulfills by autonomously navigating the
designated area. The core of this fulfillment process is a
powerful perception pipeline. We utilize a YOLOv8s model,
specifically fine-tuned for the indoor environment, to trans-
form the robot’s raw camera feed into structured, semantic
information in real-time.

This advanced object detection capability enables not only
streaming live video and odometry but also identifying and
logging specific objects of interest, providing richer data
stream compared to simple telepresence. All of this multi-
modal data—including the annotated images, object lists, and
navigation logs—is transmitted from the desktop client as
an edge server to a central server. This enables both real-
time monitoring of the mission’s progress and the creation
of a comprehensive, archived dataset for later analysis and
assurance. Therefore, our main idea is not just the creation of
a mobile robot, but a complete, perception-centric ecosystem
that translates a user intent into a high-level policy for the
collection of verifiable, semantically-rich data records from
the physical world.

The main contributions of this study are as follows:

o Implementing Manipulation Scheme of IMO for
I2ICF Framework: We designed a perception-centric,
intent-based data acquisition system as a distributed
pipeline consisting of an IMO, an edge server, and a
cloud server. This architecture transforms raw sensory in-
puts into semantically rich information, integrating object
detection results with navigation data and then archiving
them as synchronized JSON and image records for the
I2ICF framework for monitoring and analysis purposes.

« ROS2-Flask Conflict Resolution with Multi-
Processing: We resolved the long-standing conflict
between ROS2 and Flask by introducing a multi-
processing architecture that decouples the ROS2
subscriber from the Flask-based web server. This
design ensures stable, parallel data transmission without
blocking or bottlenecks, thereby enabling reliable real-
time navigation and monitoring in indoor environments.

o Indoor-Specific Object Detection with Fine-Tuned
YOLOVvV8s: We presented an indoor-specific perception
pipeline by fine-tuning the YOLOv8s model with a cus-
tom dataset that captures the unique characteristics of in-
door environments, including narrow corridors, complex
obstacle arrangements, and diverse lighting conditions.
This adaptation significantly improves detection accuracy
and robustness, supporting safer and more reliable au-
tonomous driving decisions.
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Fig. 1: Interfaces and Components of the I2ICF Framework

The remaining of this paper is structured as follows. Sec-
tion II summarize and analyzes related work. Section III ex-
plains the design of our IMO manipulation scheme. Section IV
present the implementation and evaluate the performance of
our scheme. Section V concludes this paper with future work.

II. RELATED WORK

Intent-Based Networking (IBN) is a paradigm that ab-
stracts network configuration by allowing operators to define
a natural language-based intent rather than detailed device
commands [1]. An IBN system automatically translates this
intent into executable configurations (Intent Fulfillment) [6]
and continuously verifies that the operational state matches the
desired objectives (i.e., Intent Assurance) [1], [7]. Standardiza-
tion efforts, such as those in the IETF and IRTF NMRG, have
formalized IBN concepts and definitions and also explored
their applications in various domains [8], [9].

The Interface to In-Network Computing Functions (I2ICF)
which is illustrated in Fig. 1 extends the IBN concept be-
yond traditional networking to encompass various computing
devices functions, including robotics, 10T, and autonomous
vehicles [2]. In this framework, an Intent Translator can accept
natural language input from a user, convert it into a high-
level policy as structured task specifications, and deliver them
to computing functions within the network [2], [3] . This
approach enables heterogeneous systems—such as software-
defined vehicles (SDVs)—to receive high-level human instruc-
tions and execute them through edge or servers resources with
minimal manual configuration.

In SDV environments, fulfilling such high-level intents often
requires advanced perception capabilities. One of the most
critical capabilities of these is object detection, which allows
the system to perceive and interpret its surroundings in real
time, enabling safe navigation, hazard detection, and task-
specific actions.
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The YOLO (You Only Look Once) series has been a
leading approach for real-time detection since its first ver-
sion in 2015 [10]. Among them, YOLOVS8 introduces key
improvements such as an anchor-free mechanism, a decoupled
head, and the C2f module [4] [11], achieving enhanced speed
and accuracy for robotics applications. YOLOvV8 has been
applied in autonomous driving and robotics with strong per-
formance [11], while variants like YOLOvV8-RTDAV [12] and
small-object enhanced versions [13] demonstrate its adaptabil-
ity to domain-specific tasks. In SDV systems, these detectors
can operate on edge hardware for real-time perception and
integrate with orchestration frameworks such as I2ICF for
higher-level decision-making.

III. DESIGN OF IMO MANIPULATION SCHEME

This section presents the core design of our scheme. In
Fig. 2, it illustrates the overall workflow of our proposed
system module by module. There are three main modules in
our system.

« Intelligent Moving Object (IMO): On the edge server,
data collection and transmission are carried out. The
intelligent vehicle captures raw image frames from the
onboard camera and subscribes to odometry messages
from ROS2 topics. Both data streams are forwarded to
an edge server in Desktop in Fig. 2 via a Flask-based
multiprocessing server, which publishes the video as
MIJPEG stream, and odometry data as JSON messages.

« Edge Server: On the edge server, the Object Detection
Module receives both the image and odometry streams.
The incoming frames are processed by a fine-tuned
YOLOvV8s model, which performs real-time object de-
tection. The detection results are then used by the Object
Detection Module. Using this information, the module
generates a visualized frame with annotated bounding
boxes through the Visualization Module and simultane-
ously prepares inference results that combine detection
outputs with odometry metadata.

e Cloud Server: The inference results are transmitted to
the cloud server (i.e., Kubernetes server) through the
/inference endpoint. The controller server stores detection
outputs in two formats: annotated image files for visual-
ization and JSON log files for structured analysis. This
dual storage mechanism enables both real-time monitor-
ing of the environment and long-term logging for offline
evaluation.

The proposed system operates as a pipeline, processing raw
sensor data into archived records. The workflow begins at the
IMO, hosted on the robotic platform, where data generation
occurs in two parallel, non-blocking processes to ensure real-
time responsiveness. One process continuously captures raw
image frames from the onboard camera using OpenCV, while
another ROS2 subscriber process listens to the odometry
sensor and updates the latest odometry message into a shared
queue. The Flask application then serves these data: the camera
feed is encoded and published as a continuous MJPEG stream,
while the odometry data are provided on demand as JSON
messages retrieved from the queue without interfering with
video streaming.

The process then moves to the edge server, which consumes
both streams to perform its core perception tasks. For each
incoming frame from the MJPEG stream, the edge server first
requests the most recent odometry data to synchronize the
visual frame with the robot’s physical state. The frame is
then processed by the Object Detection Module, where the
fine-tuned YOLOv8s model performs inference to identify
objects and generate class labels, confidence scores, and
bounding box coordinates. Once detection is complete, the
results are branched into two paths: the Visualization Module
overlays bounding boxes and labels onto the frame to produce
annotated outputs for real-time monitoring, while the raw
detection results are combined with odometry metadata to
form a comprehensive inference log. This log, along with the
annotated frame encoded in Base64, is packaged into a single
JSON payload.
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Finally, the JSON payload is transmitted to the inference
endpoint of the cloud server. Upon reception, the cloud server
performs dual-storage actions: the structured detection and
odometry results are archived as JSON log files, and the
Base64-encoded annotated images are decoded and saved as
JPEG files. This dual-storage mechanism ensures that percep-
tion outputs are durably preserved in synchronized formats,
enabling both immediate visual verification and long-term
analytical evaluation.

IV. IMPLEMENTATION

This section describes the implementation of the proposed
12ICF-based framework for IMOs to demonstrate the feasibil-
ity of our architecture.

For the implementation, we used ROS2 Humble [14] for
odometry data handling, Flask for HTTP-based streaming, and
OpenCV for camera processing at the IMO platform. On the

desktop client, we applied the YOLOvV8s model [4] fine-tuned
with indoor datasets to perform real-time object detection. The
server-side framework was deployed on a Kubernetes-based
cloud environment, which provided scalable orchestration of
containerized components.

The IMO was implemented using the LIMO ROS2 robotic
platform equipped with a camera and odometry sensors. A
Flask server and ROS2 node were executed in a multipro-
cessing architecture to avoid process conflicts. The Flask
server delivered real-time MJPEG video streams through the
video endpoint and JSON-formatted odometry data through
the odometry endpoint. This ensured continuous and stable
data streaming to the client.

The Edge Server acted as the perception engine. To enable
robust perception in indoor navigation scenarios, we fine-
tuned a YOLOV8s model with a dataset optimized for indoor
navigation. We considered several datasets such as ETH [15],
HEV-I [16], and UCY [17], but these were not suitable for
indoor navigation due to their outdoor or aerial collection
conditions. Therefore, we selected the AI Hub dataset [18],
which provides robot-perspective indoor driving data, as the
most appropriate choice for fine-tuning.

The AI Hub dataset provides indoor, robot-perspective RGB
imagery with multi-modal pairs (e.g., RGB JPG and depth
PNG) and annotations in JSON format covering bounding
boxes, cuboids, and action segments. In total, 150,229 labeled
frames were available, from which we sub-sampled approx-
imately 60,000 training images and 6,000 validation images
while preserving scene and class diversity. The training was
performed for 50 epochs.

We adopted the official 15-class taxonomy (e.g., counter,
pillar and desk). The captures span 12 types of indoor
venues (e.g., restaurants, exhibitions, terminals, parking lots
and churches) and two robot platforms (e.g., quadruped RB1
and wheeled RB2), supporting diverse layouts and viewpoints.

The precision—-recall curves in Fig. 3a show that the fine-
tuned model achieved an overall mAP@0.5 (i.e., mean Av-
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erage Precision when the IoU threshold is fixed at 50%) of
0.912, with consistently high precision and recall across most
categories. As shown in Fig. 3b, the Fl—confidence analysis
indicates that the optimal confidence threshold is around
0.49, yielding a balanced F1 score of 0.84. Furthermore,
the normalized confusion matrix in Fig. 4 confirms balanced
detection accuracy across major categories while highlighting
minor misclassifications in visually similar classes.

At runtime, the edge server consumed the MJPEG video
stream and odometry JSON from the robot, performed in-
ference using the fine-tuned YOLOvS8s model, and fused the
detection results with odometry data. The outputs—bounding
boxes, class labels, and confidence scores—were encapsulated
into JSON payloads along with Base64-encoded images. These
payloads were transmitted per second to the server via REST
APL

The Kubernetes-based Cloud Server acted as an Analyzer,
receiving and storing the JSON payloads and images from
the edge server. In the implementation, each component of

the I2ICF framework was containerized and deployed as a
Pod, while communication between components was handled
through Kubernetes Services. All the results were archived
as synchronized JSON logs and JPEG images, providing
a verifiable dataset for monitoring and intent assurance in
the I2ICF framework. The overall implementation flow is
illustrated in Fig. 2, where the IMO streams sensing data, the
desktop performs in-network perception tasks, and the server
maintains the closed-loop assurance [8], [19] mechanism.

V. PERFORMANCE EVALUATION

This section describes the experiment conducted to verify
whether the proposed fine-tuned model operates correctly in
the actual IMO environment. Fig. 5a shows the ground truth
labels of the dataset, while Fig. 5b shows the inference results
of the fine-tuned model. Overall, the predicted bounding boxes
align well with the ground truth, accurately detecting both the
object classes and their locations. Although in some images
additional objects were detected or relatively low confidence
scores were observed, the overall detection performance re-
mained stable, with the average confidence score of bounding
boxes in Fig. 5b being approximately 0.76.

To provide additional validation of the proposed method’s
effectiveness, a comparative experiment between the baseline
and fine-tuned models was conducted using approximately
6,000 test images, with a batch size of 64. For each image, the
number of detected bounding boxes and their corresponding
confidence scores were obtained. The sum of the confidence
scores was divided by the number of bounding boxes to
compute the average confidence per image. These values
were then aggregated across 64 images to calculate the mean
confidence for each batch. This process was repeated for a total
of 95 batches, and the resulting per-batch mean confidence
values were visualized in Fig. 6 to show the comparison. The
results show that the fine-tuned object detection performance
is up to 30% higher than the baseline performance. The results
displayed in Fig. 7 are a snapshot of the cloud server’s logs
sent by the edge server. The logs show object detection and
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odometry logs, confirming that object detection and odometry
data were successfully transmitted without collision.

VI. CONCLUSION

This paper proposed a perception-centric extension of the
I2ICF framework to enable intent-driven autonomous driving
in indoor environments. By leveraging a ROS2-based robotic
platform, we designed a distributed pipeline that integrates
sensing, perception, and data management across an IMO, an
edge server, and a cloud server. To address instability caused
by ROS2-Flask conflicts, we introduced a multiprocessing
architecture that ensures reliable real-time data transmission.
Furthermore, by fine-tuning a YOLOvV8s model, we achieved
improved detection accuracy even in indoor navigation en-
vironments. Experimental evaluations demonstrated that our
system effectively translated a user intent into a high-level
policy for safe and efficient indoor navigation while generating
semantically rich logs for monitoring and analysis. The results
support the feasibility of applying I2ICF concepts to an indoor
IMO pipeline, suggesting potential extensions toward robotics
and autonomous systems.

As future work, we will expand our framework by en-
hancing intent translation mechanisms, supporting multi-robot
coordination, and deploying the system over 5G-enabled edge
environments to validate scalability in more complex scenar-
ios.
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