
Optimizing Service Segmentation with Aggregated
Computing-Aware Traffic Steering Metrics

Kiem Nguyen Trung∗, Minh-Ngoc Tran∗, Younghan Kim∗
∗School of Electronic Engineering, Soongsil University, Seoul, South Korea

Email: kiemnt@dcn.ssu.ac.kr, mipearlska1307@dcn.ssu.ac.kr, younghak@ssu.ac.kr

Abstract—Service segmentation refers to the decomposition of
a service into smaller subtasks that can be executed sequentially
or in parallel across multiple service sites, enabling emerging
applications such as distributed AI workloads to meet stringent
requirements. However, the existing Computing-Aware Traffic
Steering (CATS) framework and its metric design are designed
primarily for monolithic services and can lead to suboptimal
end-to-end performance for service segmentation. To address this
limitation, we propose a new CATS metric aggregation level, im-
plemented as a Metric Aggregator that consolidates normalized
subtask metrics into a unified metric, enabling a more efficient,
stable, and scalable pipeline of service segmentation selection
with reduced control-plane overhead. Experimental results on
a P4-based testbed demonstrate that our approach significantly
lowers routing setup latency compared to the baseline CATS
metric selection method.

Index Terms—Computing-Aware Traffic Steering, Service
Chains, Software Defined Network, Service Segmentation, P4

I. INTRODUCTION

Emerging applications such as augmented reality (AR),
virtual reality (VR), and distributed AI workloads demand
stringent Quality of Service (QoS) and Quality of Experi-
ence (QoE) guarantees. Edge computing has emerged as a
promising paradigm to meet these requirements by placing
computing resources closer to end users, thereby reducing
latency and improving responsiveness. To support large-scale
user demands, the future network landscape is expected to see
an increasing deployment of small edge computing sites [1],
[2]. For better availability and scalability, the same service
may be deployed across multiple sites, and the Computing-
Aware Traffic Steering (CATS) framework has been proposed
to support them in distributed computing environments.

However, due to the inherent resource constraints of indi-
vidual edge sites, many computationally intensive applications
cannot be executed entirely within a single site. Service
segmentation has therefore become an attractive deployment
option to address this limitation. In this approach, a service
is divided into smaller subtasks that can be executed either
sequentially or in parallel, with their results aggregated to
complete the service request [3]. For instance, an XR rendering
service can be structured as a sequential pipeline of subtasks,
such as render engine processing, engine adaptation, and
rendering acceleration, each deployed at different edge sites.
This distributed execution reduces the computational load on
any single edge site, improves fault tolerance, and enhances
service responsiveness.

Selecting an optimal pipeline of subtasks for serving user
requests is crucial. Choosing the physically closest edge sites
does not always yield the best performance, as factors such
as resource shortages, network congestion, and long task
queues can degrade service quality. However, the current
CATS metrics definition is primarily for single, monolithic
services and lacks explicit support for service segmentation.
While these metrics can facilitate the selection of an optimal
instance for each subtask independently, they may lead to
suboptimal performance when applied to an entire subtask
pipeline. This gap motivates the need for a more efficient
solution.

In this paper, we address this gap by enhancing the CATS
architecture to support service segmentation by introducing
a new metric design that improves efficiency, stability, and
scalability while minimizing control and protocol overhead.
The remainder of the paper is organized as follows: Section
II reviews the background and related work. Section III intro-
duces our proposed solution. Section IV presents experimental
validation on a P4-based testbed. Section V concludes the
paper.

II. BACKGROUND AND RELATED WORKS

Computing-Aware Traffic Steering or CATS [4] is a concept
introduced by the IETF CATS working group to address
service delivery in distributed computing environments. The
working group assumes the presence of multiple service
instances providing the same service, deployed across one or
more service sites. Therefore, CATS facilitates traffic steering
toward the most suitable service instance location, taking into
account the current state of both computing and network
resources.

To support service instance selection, the working group
has defined a standardized set of metrics [5], structured into
three hierarchical levels, L0, L1, and L2, arranged in order of
increasing abstraction to balance decision-making efficiency
with the level of detail provided. L0 represents raw metrics,
which are unprocessed measurements reported directly in their
native units from underlying resources, such as CPU base and
boost frequencies, core count, utilization. L1 normalizes these
raw metrics into broader categories, such as computing or
networking, producing unitless scores. L2 further consolidates
multiple L1 metrics, or in some cases L0 metrics directly, into
a single normalized score that reflects the overall performance
of a service instance. These standardized metrics enable CATS

1654979-8-3315-5678-5/25/$31.00 ©2025 IEEE ICTC 2025

to select the most appropriate service instance for a given
request.

However, emerging applications often exceed the capac-
ity of a single service site. Service segmentation addresses
this by dividing a service into smaller subtasks executed
across multiple sites. Each subtask instance offers partial
service functionality, and multiple instances may exist for
the same subtask [3]. Prior research on service segmentation
has primarily focused on service splitting strategies [6], [7]
and placement optimization in Multi-access Edge Computing
(MEC) environments [8], [9]. Moreover, according to the
CATS metrics definition [5], their metrics are standardized and
defined only for single services, enabling the selection of the
optimal instance for an individual service. Therefore, when
these decisions are applied independently to each subtask
within a segmented service pipeline, the resulting end-to-end
execution may not be optimal. This is because subtasks may
be scheduled to run on resource-rich but geographically distant
edge sites, leading to inefficiencies in the overall pipeline
performance.

To address this gap, this paper proposes a new approach for
optimal pipeline selection in segmented services. A detailed
explanation of the proposed architecture is presented in the
following section.

III. PROPOSED SOLUTION

In this section, we present our solution. The most essential
contribution of our work is the introduction of a new CATS
metric aggregation level, Service Pipeline Metrics, illustrated
in Figure 1. This level aggregates the Level 2 metrics of all
services within a pipeline into a single pipeline-level metric
through an aggregation function. This design addresses the
limitations of the existing CATS metrics when applied to
segmented services.

The aggregation is performed by the Metric Aggregator
(Figure 2), which works alongside existing CATS components
to normalize and combine subtask metrics for efficient and
scalable pipeline selection. For example, in a segmented
service with two pipelines, Pipeline 1 executing Task A at
MEC 1 and Task B at MEC 2, and Pipeline 2 executing Task
A at MEC 3 and Task B at MEC 2, the pipeline metric is
obtained by combining the L2 metrics of its subtasks (e.g.,
Task A at MEC 1 with Task B at MEC 2 for Pipeline 1). At
each service site hosting subtask instances, every subtask is
associated with a metric subtask component, which computes a
Level 2 metric representing the subtask’s overall performance.
This metric is derived from a set of normalized Level 1
metrics, including computation, communication, and task-
specific performance indicators. Normally, the CATS Service
Metrics Agent (C-SMA) is responsible for calculating and
normalizing computation-related metrics into Level 1 form,
and it could be placed inside CATS Forwarders. However,
due to the resource constraints of CATS Forwarders, this
placement is not recommended as it may negatively impact
routing performance. To mitigate this, the C-SMA is instead

M3

M2-A
(Service A)

M2-X
(Service X)

M1-A M1-A M1-X M1-X

M0M0 M0M0 M0

(...)

(...)L2 Metrics:

L1 Metrics:

L0 Metrics: M0

Service Pipeline Metrics:

(...)

(...)

(...) (...) M0 M0 M0(...)

Fig. 1. New CATS Metric Aggregation Level

C-PS

C-NMA

C-TC

CATS-Forwarder 1

CATS-Forwarder 1

CATS-Forwarder 2

Subtask Instance

C-SMA
Service Contact

Instance

Metric
Aggregator

Subtask Instance

C-SMA

Service Contact
Instance

Service Site 1

Underlay
Infrastructure

Service Site 2

TSM

Client

Metric Subtask

Metric Subtask

Fig. 2. Architecture of CATS framework for Segmentation Service

implemented at the service contact instance, ensuring efficient
metric collection without overloading the forwarding layer.

Once all pipeline metrics are computed and normalized by
the Metric Aggregator, the CATS Path Selector (C-PS) selects
the optimal execution pipeline and configures the relevant
CATS Forwarders with routing information. When a client
issues a service segmentation request, the Task Segmentation
Module (TSM) on the client side decomposes it into subtask
requests, directs each subtask through the selected pipeline
via the CATS Forwarders, and finally aggregates the outputs
to produce the complete service result, which is returned to
the client.

IV. IMPLEMENTATION AND RESULT

To evaluate the proposed approach, we constructed a P4-
based testbed to demonstrate its practical implementation.
The experimental setup is an extended version of the testbed
presented in our previous work [10]. In the evaluated scenario,
a client issues a segmentation service request that is executed
as a sequential pipeline of two subtasks. The first subtask
performs segmentation to identify the target region, while the
second subtask inserts AR effects (e.g., glasses, hats, stickers)
at the correct position.

In the data plane, this segmentation service is deployed as
two alternative pipelines. In Pipeline 1, the first subtask is
at MEC site 1 and the second at MEC site 2; in Pipeline 2,
they run at MEC sites 3 and 4 as as shown in Figure 3. Each
MEC site hosts one subtask instance and its exporter process.
The exporter normalizes metrics from multiple categories,
such as computing, storage, obtained from the MEC node,
and networking, obtained from the ONOS SDN controller
and P4 switches. In the control plane, Prometheus gathers

1655

router5router1

router2 router3 router8

router6 router7 router9

router4

Client

Control Plane

Data Plane

MEC site 1 MEC site 2

MEC site 3

MEC site 4

Exporter Exporter

Exporter

Exporter

Metric Aggregator

Fig. 3. Overview testbed networking

these metrics, the Metric Aggregator normalizes them and
computes a single score per pipeline, and ONOS SDN uses
these aggregated metrics to select the optimal pipeline and
installs routing rules to steer client traffic.

To validate the benefits of our design, we compared our
proposal with a baseline method. In the baseline, all subtask
metrics remain as raw metrics. In this case, ONOS must
query all the relevant metrics from every MEC site and P4
switches in sequence, and perform computation to determine
the optimal pipeline. This increases the control-plane overhead
and routing setup time. Figure 4 presents the experimental
result about the setup routing time. As expected, our approach
achieves significantly lower setup latency than the baseline
method. With a pipeline of two sequential subtasks, our
proposed method completes the routing setup in 138 ms, while
the baseline incurs much longer latency due to the additional
metric collection and computation steps. The performance ad-
vantage becomes more pronounced as the number of subtasks
in the service chain increases, since the baseline must query
and process more raw metrics.

Overall, the results demonstrate that our aggregated
pipeline-metric approach provides better efficiency, scalability,
and stability compared to the baseline CATS metric selection
at the instance level. Although aggregated metrics may be less
precise than raw metrics, the significant reduction in overhead
and routing setup latency makes them more suitable for timely
decision making and direct use by network devices.

V. CONCLUSION

In this paper, we address the limitations of existing CATS
metrics in handling service segmentation by introducing a new
aggregation level, which allows efficient selection of end-to-
end subtask execution pipelines. Experimental validation on
a P4-based testbed demonstrated that our proposed approach
reduces routing setup latency and control plane overhead
compared to using raw instance-level metrics. Future work will
focus on integrating into 5G/6G, particularly the Mobile User
Plane domain, while also examining the precision–efficiency
trade-off of aggregated metrics and extending validation to
more complex service segmentation for scalability.

Fig. 4. Comparison between our proposal and the baseline method in setup
routing time

ACKNOWLEDGMENT

This work was supported by Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (No.RS-2022-
II221015, Development of Candidate Element Technology for
Intelligent 6G Mobile Core Network, 50) and This work
was supported by Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the
Korea government(MSIT) (No.RS-2024-00398379, Develop-
ment of High Available and High Performance 6G Cross Cloud
Infrastructure Technology, 50)

REFERENCES

[1] K. Nguyen Trung and Y. Kim, “Design and Implementation of a Cost-
Effective Failover Mechanism for Containerized UPF,” Electronics, vol.
14, no. 15, p. 2991, Jan. 2025

[2] K. Yao, L. M. Contreras, H. Shi, S. Zhang, and Q. An, “Computing-
Aware Traffic Steering (CATS) Problem Statement, Use Cases, and Re-
quirements,” IETF, Internet Draft draft-ietf-cats-usecases-requirements-
07. Accessed 15 Aug. 2025.

[3] T. M. Ngc and Y. Kim, “Additional CATS requirements consideration
for Service Segmentation-related use cases,” IETF, Internet Draft draft-
dcn-cats-req-service-segmentation-02. Accessed 15 Aug. 2025.

[4] C. Li, Z. Du, M. Boucadair, L. M. Contreras, and J. Drake, “A Frame-
work for Computing-Aware Traffic Steering (CATS),” IETF, Internet
Draft draft-ietf-cats-framework-11, Accessed 15 Aug. 2025.

[5] N. Li, A. Iosifidis, and Q. Zhang, “Collaborative edge computing
for distributed CNN inference acceleration using receptive field-based
segmentation,” Computer Networks, vol. 214, p. 109 150, Sep. 2022.

[6] C. Zhang, J. Chen, W. Li, et al., “A cloud-edge collaborative task
scheduling method based on model segmentation,” Journal of Cloud
Computing, vol. 13, no. 1, p. 81, Apr. 2024.

[7] M. A. Khoshkholghi, M. Gokan Khan, K. Alizadeh Noghani, et al.,
“Service Function Chain Placement for Joint Cost and Latency Op-
timization,” Mobile Networks and Applications, vol. 25, no. 6, pp.
2191–2205, Dec. 2020.

[8] B. Li, R. Yang, L. Liu, and C. Wu, “Service Place- ment and Trajectory
Design for Heterogeneous Tasks in Multi-UAV Edge Computing Net-
works,” IEEE Internet of Things Journal, vol. 12, no. 8, pp. 9360–9371,
Apr. 2025

[9] K. Yao, C. Li, L. M. Contreras, J. Ros-Giralt, and H. Shi, “CATS Metrics
Definition,” IETF, Internet Draft draft-ietf-cats-metric-definition-03, Jul.
2025. Accessed 15 Aug. 2025.

[10] K. T. Nguyen and Y. Kim, “A Design and Implementation of Service
Function Chaining Over Segment Routing IPv6 Network,” in 2024 15th
International Conference on Information and Communication Technol-
ogy Convergence (ICTC), Oct. 2024, pp. 1938–1941.

1656

