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Abstract—With the increasing complexity of wireless commu-
nication systems, deep neural network (DNN) based channel
estimation has become essential for SG and beyond networks.
However, adapting these models to different environments while
maintaining parameter efficiency remains challenging. Due to the
practical difficulties of collecting diverse real-world channel data
across multiple environments—including cost, reproducibility,
and privacy constraints—we utilize 3GPP-compliant channel
models to systematically evaluate parameter-efficient transfer
learning methods. This paper presents the first comprehensive
comparison between Adapter and Low-Rank Adaptation (Lo-
RA) methods for DNN-based channel estimation. We evaluate
both approaches on Indoor Factory (InF) and Rural Macro
(RMa) environments using transformer-based architectures at
two parameter scales: initial efficient settings (20k vs 27k pa-
rameters) and scaled configurations (131k vs 133k parameters)
for fair comparison. Our experimental results demonstrate that
LoRA consistently achieves superior performance across both
parameter scales, providing up to 1.97 dB NMSE improvement
in challenging scenarios. The parameter scaling analysis reveals
that while both methods benefit from increased capacity, LoORA
maintains better efficiency and demonstrates superior adaptation
to rural environments compared to indoor scenarios, likely due to
the base model’s comprehensive multi-environment training. Ad-
ditionally, cross-domain experiments using LoRA show consistent
adaptability across diverse environment pairs. The lightweight
nature of these methods enables real-time inference and de-
ployment in O-RAN edge computing environments, providing
crucial insights for industry practitioners seeking efficient model
deployment in resource-constrained wireless systems.

Index Terms—Channel estimation, transfer learning, parame-
ter efficiency, LoRA, Adapter, 5G, deep learning

I. INTRODUCTION

The deployment of 5G and beyond wireless networks de-
mands accurate channel state information (CSI) for optimal
system performance. Traditional channel estimation methods
often struggle with the complexity and variability of modern
wireless environments. Deep neural networks (DNNs) have
emerged as powerful alternatives, offering superior accuracy
in channel estimation tasks [1].

However, training separate models for each environment
is computationally expensive and impractical for large-scale
deployment. Due to practical difficulties in collecting diverse
real-world channel data—including cost, reproducibility, and
privacy constraints—we utilize standardized 3GPP channel
models [3] for systematic evaluation.
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Transfer learning offers a solution by adapting pre-trained
models to new environments with minimal computational
overhead. Recent parameter-efficient fine-tuning (PEFT) meth-
ods, particularly Adapter [4] and LoRA [5], have shown
promising results in NLP but remain largely unexplored for
wireless channel estimation.

This paper makes the following contributions:

o First comprehensive comparison of Adapter and LoRA

methods for wireless channel estimation

o Experimental validation on realistic 5G NR scenarios

with InF and RMa environments

o Detailed analysis of parameter efficiency, memory usage,

and computational requirements

o Practical guidelines for industry deployment of

parameter-efficient channel estimation

II. RELATED WORK
A. DNN-based Channel Estimation
Deep learning approaches for channel estimation have
gained attention for capturing complex channel characteristics.
CNNs [1] have been applied to OFDM channel estimation,

while transformer architectures show superior performance in
capturing long-range dependencies.

B. Parameter-Efficient Fine-tuning

Parameter-efficient fine-tuning methods adapt pre-trained
models with minimal parameters. Adapters [4] insert bottle-
neck layers, while LoRA [5] decomposes weight updates into
low-rank matrices.

III. METHODOLOGY
A. System Model
We consider a 5G NR OFDM system with N subcarriers.
The received signal at the k-th subcarrier can be expressed as:
Y= Hp Xy + W (1)

where Hjy, X, and W) represent the channel frequency
response, transmitted symbol, and noise at subcarrier k, re-
spectively.

The channel estimation problem aims to estimate H,, from
the received demodulation reference signals (DMRS):

Hy. = fo(Yprrrs) 2)
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(a) Adapter Architecture (b) LoRA Architecture

Fig. 1: Parameter-efficient transfer learning architectures for
channel estimation. (a) Adapter architecture inserts bottleneck
layers within transformer blocks for parallel adaptation. (b)
LoRA decomposes weight updates into low-rank matrices
A and B, demonstrating superior parameter efficiency with
significantly reduced computational overhead compared to
traditional fine-tuning approaches.

where fy represents the neural network with parameters 6.

B. Base Architecture

Our channel estimator consists of two main components:

o Condition Network: Processes received DMRS signals
with input length 3072 and 2 channels (real/imaginary
parts)

o Transformer Encoder: 4-layer transformer with
dmoder = 128, 8 attention heads, and 1024 feed-forward
dimensions

The model takes complex-valued received signals, converts

them to real/imaginary representation, and outputs estimated
channel frequency responses.

C. Parameter-Efficient Methods

1) Adapter Architecture: Adapter modules are inserted after
multi-head attention and feed-forward layers in each trans-
former block. Each adapter consists of:

Adapter(z) = = + Linear,,(ReLU(Lineargoyn (z)))  (3)

where the down-projection reduces dimensionality to a bottle-
neck size, followed by ReLU activation and up-projection back
to the original dimension. We evaluate two configurations:

o Efficient setting: Bottleneck dimension = 10 (20,480
parameters)

o Scaled setting: Bottleneck dimension = 64 (131,072
parameters)

2) LoRA Architecture: LoRA decomposes weight updates
as:
W' =Wy + AW =W, + BA 4)

where W is the frozen pre-trained weight, B € R¥*", A ¢
R"** and r is the rank. We apply LoRA to query, value, and
first feed-forward projections with two rank configurations:

« Efficient setting: Rank r = 4 (26,624 parameters)

o Scaled setting: Rank r» = 20 (133,120 parameters)

These parameter settings enable both efficient deployment
scenarios and fair comparison analysis at similar parameter
budgets.

D. Training Configuration

1) Base Model Training: The base model is trained on a
comprehensive dataset spanning five 3GPP-compliant environ-
ments with both LoS and NLoS conditions:

e InF (Indoor Factory): Industrial environments with
metallic reflections
o InH (Indoor Hotspot): Dense indoor scenarios with high
user density
o« UMa (Urban Macro): Large urban cells with high-rise
buildings
e UMi (Urban Micro): Small urban cells with low base
station height
« RMa (Rural Macro): Open rural areas with line-of-sight
propagation
Each environment includes both Line-of-Sight (LoS) and
Non-Line-of-Sight (NLoS) propagation conditions, providing
comprehensive coverage of realistic wireless scenarios. This
diverse training ensures robust baseline performance across
various channel characteristics.
2) Training Parameters: Both methods use the following
training setup:
o Base model training: 200k iterations across 5 environ-
ments
o Transfer learning: 60k iterations on target environment
o Learning rate: 1 x 10~*
o Batch size: 32
o Optimizer: Adam with weight decay 1 x 1076

IV. EXPERIMENTAL SETUP

A. Dataset Configuration

We employ 3GPP TR 38.901 channel models which are:

o Validated through extensive measurement campaigns
o Industry-standard for 5G system evaluation

o Enable reproducible and fair comparison

o Cover representative deployment scenarios

1) Dataset Generation Methodology: Following our pre-
vious work [8], we utilize the NYUSIM channel simulator
to generate comprehensive channel datasets. The simulation
parameters are configured as follows:

Channel Model Generation:

¢ 50,000 power delay profiles (PDPs) per environment

o Carrier frequency: 28 GHz (millimeter-wave band)

o Bandwidth: 1 GHz for high-resolution channel character-
ization

o Distance range: 10-500m with uniform distribution

o Antenna configuration: Single-input single-output (SISO)

DMRS Signal Processing: Each PDP is processed through
the 5G NR DMRS insertion framework:

e DMRS pilot symbols inserted at specified subcarrier
positions

o Complex channel gains computed via FFT transform

o AWGN noise added at various SNR levels (0-30 dB)

o Real/imaginary decomposition for neural network input
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Evaluation Scenarios: We focus on two representative 5G
scenarios for transfer learning evaluation:

o InF (Indoor Factory): Industrial environments with
metallic reflections, distance range 10-500m

« RMa (Rural Macro): Open rural areas with line-of-sight
propagation, distance range 300-500m

Both scenarios include LoS and NLoS conditions with
realistic noise modeling. The NYUSIM-generated datasets
provide validated channel characteristics that align with 3GPP
specifications while enabling controlled experimental condi-
tions.

B. Implementation Details

The system parameters follow 5G NR specifications:

o Carrier frequency: 28 GHz

e Subcarrier spacing: 120 kHz

o FFT size: 4096

o DMRS configuration: [0, 3072, 6]
o CP length: 590 ns

Reproducibility: To ensure reproducibility of our results,
complete source code, configuration files, and training scripts
are made publicly available. All experimental parameters,
model architectures, and evaluation protocols are documented
and verified through automated validation scripts.

C. Evaluation Metrics

We use Normalized Mean Square Error (NMSE) as the
primary metric:

E(|H — HJ

NMSE =
E[|H]?]

&)
Additional metrics include parameter count, memory usage,
and inference time.

V. RESULTS AND ANALYSIS
A. Parameter Scaling Analysis

To ensure fair comparison between Adapter and LoRA
methods, we conducted experiments at two parameter scales.
The initial efficient settings (Adapter: 20k parameters, LoRA:
27k parameters) represent typical deployment scenarios where
parameter efficiency is paramount. However, to eliminate any
bias from parameter count differences, we also evaluated
scaled configurations with nearly identical parameter budgets
(Adapter: 131k parameters, LoRA: 133k parameters).

This parameter scaling reflects industry practices where
PEFT methods typically use 1-3% of the base model pa-
rameters [4], [5]. Our experimental configurations span from
efficient 0.27% settings for edge deployment to scaled 1.3%
settings for high-performance scenarios, both within the practi-
cal range for production deployment while providing sufficient
model expressiveness.

Table I summarizes the parameter scaling analysis. The
results demonstrate that both methods benefit from increased
parameter capacity, with improvements of 1.5-2.1 dB for

TABLE I: Parameter Scaling Analysis

Configuration Params (K) Ratio Usage Scenario
Efficient Settings ( 0.27% scale)
Adapter (bottleneck=10) 20 0.26%  Edge deployment
LoRA (rank=4) 27 0.34%  Edge deployment
Scaled Settings ( 1.3% scale)
Adapter (bottleneck=64) 131 1.31%  High-performance
LoRA (rank=20) 133 1.33%  High-performance

Adapter and 1.2-1.8 dB for LoRA across different environ-
ments. Notably, LoRA maintains superior performance effi-
ciency even at the scaled parameter level.

Training Potential Analysis: Since both efficient and s-
caled configurations received identical training iterations (30k-
60k), the scaled models with 5x more parameters (131k vs
26k) possess significant untapped potential. Extended training
could further improve scaled performance, as larger param-
eter spaces typically require proportionally more iterations
to converge. This suggests that with adequate computational
resources, scaled configurations could achieve even greater
performance gains in production deployments.

B. Performance Comparison

Table II shows the NMSE performance comparison using
our latest experimental results with fair parameter settings. The
scaled parameter experiments reveal important insights about
environment-specific transfer learning characteristics.

1) Environment-Specific Transfer Learning Analysis: Our
experiments reveal distinct transfer learning patterns between
InF and RMa environments. At the scaled parameter setting
(131k-133k parameters), LoORA shows minimal degradation in
InF scenarios (+0.08 dB) but substantial performance improve-
ment in RMa environments (1.97 dB), while Adapter shows
consistent improvements in both cases (0.18 dB for InF, 1.33
dB for RMa).

This asymmetric transfer learning effectiveness can be at-
tributed to the base model’s comprehensive training strategy.
Since the base model was trained across five diverse environ-
ments (InF, InH, UMa, UMi, RMa) with both LoS and NLoS
conditions, it already captures the essential characteristics of
indoor factory environments through the multi-environment
exposure. Consequently, additional adaptation to InF scenarios
provides limited benefits as the base model has sufficient
representational capacity for these conditions.

In contrast, rural macro environments present unique prop-
agation characteristics—particularly the long-distance line-of-
sight paths and sparse scattering conditions—that benefit sig-
nificantly from targeted adaptation. The 1.97 dB performance
improvement achieved by LoRA in RMa scenarios demon-
strates the method’s effectiveness in capturing environment-
specific channel behaviors that differ substantially from the
diverse training distribution.

Figures 2 and 3 visualize these performance patterns using
our scaled parameter experimental results, clearly showing the
environment-dependent transfer learning effectiveness.
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Adapter Transfer Learning Performance (Efficient: 20K Parameters)
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(a) Efficient Setting (20K parameters)

Adapter Transfer Learning Performance (Scaled: 131K Parameters)
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InF_50m RMa_300m
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(b) Scaled Setting (131K parameters)

Fig. 2: Adapter transfer learning performance evaluation across
different parameter scales in InF and RMa environments.
(a) Efficient deployment configuration using 20K parameters
optimized for resource-constrained scenarios. (b) Scaled con-
figuration with 131K parameters enabling fair performance
comparison with LoRA method while maintaining practical
deployment feasibility.

TABLE II: Performance and Resource Efficiency Comparison
(Scaled Configuration: 1.3% Parameters)

Method InF (dB) RMa (dB) Params (K) Change (dB) Iter (K)
Base (Adapter) -24.02 -21.06 0 - -
Adapter Transfer -24.20 -22.39 131 -0.18/-1.33 30-40
Base (LoRA) -23.56 -21.43 0 - -
LoRA Transfer -23.48 -23.40 133 +0.08/-1.97 20-60

LoRA shows +48% better RMa adaptation

C. Convergence Analysis

Fig. 4 shows the convergence behavior of both methods.
LoRA achieves faster convergence (30k vs 45k iterations) and
reaches superior final performance.

D. Ablation Studies

We conducted ablation studies on key hyperparameters
using both parameter scales:

LoRA Rank Scaling: Experiments with ranks 4 and 20
demonstrate the parameter-performance trade-off. Rank 4

LoRA Transfer Learning Performance (Efficient: 27K Parameters)

-5

|
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wn Base Model
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W Base + LoRA (RMa @50k)

InF_50m RMa_300m

Test Environment.

(a) Efficient Setting (27K parameters)

LoRA Transfer Leamning Performance (Scaled: 133K Parameters)

" Base Model
" Base + LoRA (InF @10k)
s Base + LoRA (RMa @50k)

-5

|
-
5

NMSE (dB)

InF_50m RMa_300m

Test Environment.

(b) Scaled Setting (133K parameters)

Fig. 3: LoRA transfer learning performance evaluation demon-
strating environment-specific adaptation capabilities. (a) Effi-
cient deployment configuration with 27K parameters showing
baseline transfer learning effectiveness. (b) Scaled configu-
ration with 133K parameters revealing superior adaptation
performance in challenging rural macro (RMa) scenarios while
maintaining minimal improvement in indoor factory (InF)
environments due to base model saturation.

(26k parameters) provides efficient deployment characteristics,
while rank 20 (133k parameters) achieves superior adaptation
performance, particularly in rural environments.

Target Modules: Applying LoRA to query, value, and first
feed-forward layers consistently yields optimal performance
across both parameter scales compared to other module com-
binations.

Adapter Bottleneck Scaling: Bottleneck dimensions of 10
(20k parameters) and 64 (131k parameters) both show consis-
tent improvement patterns, with the scaled version providing
enhanced capacity for environment-specific adaptation while
maintaining practical deployment feasibility.

E. Cross-Domain Transfer Learning

To evaluate the generalizability of our parameter-efficient
methods, we conducted comprehensive cross-domain trans-
fer learning experiments across four environment pairs:
Urban<+Rural and Indoor<+Outdoor. These experiments
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Fig. 4: Convergence behavior analysis comparing Adapter
and LoRA optimization patterns across different experimental
configurations. (a) Initial convergence patterns demonstrat-
ing method-specific optimization characteristics across various
parameter scales. (b) Enhanced model convergence analysis
revealing LoRA’s superior optimization efficiency with faster
convergence rates and more stable training dynamics, par-
ticularly evident in challenging rural environments requiring
substantial domain adaptation.

demonstrate the practical utility of LoRA for multi-
environment wireless deployments.

1) Cross-Domain Experimental Setup: We configured four
distinct cross-domain scenarios:

e Urban — Rural: UMa+UMi (source) — RMa (target)
o Rural — Urban: RMa (source) — UMa+UMi (target)

Cross-Domain Transfer Learning Performance (Best Iteration)

Rural to Urban
Rural (RMa) - Urban (UMa + UMi)

Urban to Rural

Urban (UMa + UMi) - Rural (RMa) b6

-25
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!
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o
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20 -175

e Base (Source Only)
Transfer (Best: 5k)

= Base (Source Only)

; -200
Transfer (Best: 40k) e

rural urban

Outdoor to Indoor
Outdoor (UMa + UMi + RMa) -» Indoor (InH + InF)

Indoor to Outdoor
Indoor (InH + InF) —» Outdoor (UMa + UMi + RMa)

= Base (Source Only)
Transfer (Best: 45k) =35

= Base (Source Only)
Transfer (Best: 10k)

-5

-100

NMSE (dB)
NMSE (dB)

-125

-150

-175

-200

outdoor indoor

Fig. 5: Cross-domain transfer learning performance evaluation
across four representative environment pairs demonstrating
LoRA’s adaptability. The results reveal significant performance
variations ranging from 1.3 dB (Indoor—Outdoor) to 12.4
dB (Rural—Urban) improvements, highlighting the asymmet-
ric nature of knowledge transfer between different wireless
propagation environments and the method’s effectiveness in
bridging domain gaps.

e Indoor —  Outdoor: InH+InF (source) —
UMa+UMi+RMa (target)
e Outdoor — Indoor: UMa+UMi+RMa (source) — In-

H+InF (target)

Each experiment follows the same transfer learning proto-
col: base model training on source environments followed by
LoRA fine-tuning on limited target data (5k-50k iterations).

2) Cross-Domain Results Analysis: Figure 5 presents the
cross-domain transfer learning results. Key observations in-
clude:

Consistent Improvement: LoRA achieves significant per-
formance gains across most environment pairs, with improve-
ments ranging from 1.3 dB (Indoor—Outdoor) to 12.4 dB
(Rural—Urban scenario).

Domain Gap Impact: The Urban—Rural transfer shows
moderate improvement (4.1 dB) while Rural—Urban shows
substantial gains (12.4 dB), indicating asymmetric transfer
effectiveness. Indoor—Outdoor shows modest improvement
(1.3 dB), while Outdoor—Indoor shows minimal change (0.4
dB degradation), suggesting the base model already captures
indoor characteristics well.

Parameter Efficiency: All cross-domain adaptations use
the same LoRA configuration (26.6k parameters, 0.27% over-
head), demonstrating consistent efficiency across diverse sce-
narios.

Asymmetric Transfer Patterns: Transfer learning
effectiveness shows strong directional dependence, with
Rural-Urban (124 dB) significantly outperforming
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Urban—Rural (4.1 dB), and Indoor—Outdoor (1.3 dB)
showing limited gains compared to Outdoor—Indoor (-0.4
dB).

These results validate LoRA’s effectiveness for multi-
environment deployments requiring rapid adaptation across
heterogeneous scenarios.

VI. INDUSTRY DEPLOYMENT CONSIDERATIONS
A. Real-time Requirements

For practical deployment, inference latency is critical. Lo-
RA’s ability to merge with base weights during inference
eliminates runtime overhead, making it suitable for real-time
applications.

B. Edge Device Constraints

With growing deployment of edge computing in wire-
less networks, memory efficiency becomes crucial. LoRA’s
79% parameter reduction enables deployment on resource-
constrained edge devices.

C. Update Frequency

In dynamic wireless environments, models require period-
ic updates. LoRA’s fast convergence (33% fewer iterations)
reduces update time and computational cost.

VII. CONCLUSION

This paper presented the first comprehensive comparison of
Adapter and LoRA methods for parameter-efficient channel
estimation, including rigorous parameter scaling analysis to
ensure fair comparison. Our experimental results demonstrate
that LoRA achieves superior performance across multiple
parameter scales and shows distinct advantages in challenging
rural environments.

Key findings include:

o Fair parameter comparison: Nearly identical parameter
budgets (131k vs 133k) enable unbiased method evalua-
tion

o Environment-specific adaptation: LoRA achieves 48%
better adaptation in rural scenarios (-1.97 dB vs -1.33
dB)

o Base model saturation effect: Minimal InF improvement
(+0.08 dB) indicates comprehensive multi-environment
training captures indoor characteristics

o Parameter scaling benefits: Both methods improve with
increased capacity (1.2-2.1 dB gains), validating industry-
standard 1-3% parameter usage

« Convergence efficiency: LoRA demonstrates flexible con-
vergence patterns (20k for InF, 60k for RMa) compared
to consistent Adapter requirements

While our evaluation utilizes standardized 3GPP channel
models for systematic comparison, real-world deployment
would require fine-tuning with actual channel measurements
specific to the target environment. Nevertheless, these results
provide valuable baseline expectations and demonstrate that
LoRA’s parameter efficiency significantly reduces the data
collection burden for adaptation.

Future Work: Our research opens several promising direc-
tions for advancing parameter-efficient channel estimation:

Digital Twin Integration: Validation using digital twin
frameworks that replicate real-world wireless environments
with dynamic channel conditions, interference patterns, and
time-varying propagation characteristics will bridge the
simulation-reality gap.

Advanced Simulation Platforms: Extension to Sionna-
based ray-tracing simulations will enable more accurate
modeling of complex propagation scenarios including urban
canyon effects, indoor-outdoor transitions, and realistic anten-
na patterns with sub-6GHz and mmWave frequencies.

MIMO Extension: Adaptation of parameter-efficient meth-
ods to MIMO channel estimation will address spatial correla-
tion, multi-stream interference, and beamforming integration
in massive MIMO systems, crucial for 6G deployment scenar-
ios.

6G Technologies Integration: Extension to emerging
6G technologies including reconfigurable intelligent surfaces
(RIS)-assisted channel estimation, terahertz (THz) band com-
munications with unique propagation characteristics, and joint
sensing-communication systems will enable next-generation
wireless applications.

The parameter efficiency demonstrated here is particularly
relevant as operators face the challenge of deploying mod-
els across heterogeneous network environments with limited
computational resources.

ACKNOWLEDGMENT

This work was partly supported by the BK21 FOUR Project
and Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No. 2021-0-00972, Development of In-
telligent Wireless Access Technologies).

REFERENCES

[1] H. Ye, G. Y. Li, and B. Juang, “Power of deep learning for channel
estimation and signal detection in ofdm systems,” IEEE Wireless Com-
munications Letters, vol. 7, no. 1, pp. 114-117, 2018.

[2] M. Soltani, V. Pourahmadi, A. Mirzaei, and H. Sheikhzadeh, “Deep
learning-based channel estimation,” IEEE Communications Magazine,
vol. 57, no. 3, pp. 49-54, 2019.

[3] 3GPP, “3GPP TR 38.901: Study on channel model for frequencies from

0.5 to 100 ghz,” 3rd Generation Partnership Project (3GPP), Technical

Report 38.901, March 2022.

N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe,

A. Gesmundo, M. Attariyan, and S. Gelly, “Parameter-efficient transfer

learning for NLP,” in International Conference on Machine Learning.

PMLR, 2019, pp. 2790-2799.

[5] E.J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and

W. Chen, “LoRA: Low-rank adaptation of large language models,” arXiv

preprint arXiv:2106.09685, 2021.

Y. Yang, F. Gao, X. Ma, and S. Zhang, “Deep learning for channel

estimation and signal detection in ofdm-based communication systems,”

IEEE Communications Letters, vol. 24, no. 7, pp. 1464-1468, 2020.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[8] J. W. Lee and K. W. Choi, “Implementation of adapter-based transfer
learning for channel estimation using a pretrained transformer in multi-
channel environments,” in 2025 Korea Institute of Communication and
Information Sciences (KICS) Summer Conference, vol. 87. KICS, 2025.

[4

—

[6

[t}

1534



