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Abstract—In modern cellular networks, the handover (HO)
of selecting the optimal base station according to the user
equipment (UE) mobility is indispensable. However, conventional
HO mechanisms primarily rely on reactive methods, which
face inherent limitations in dealing with network uncertainties
and real-time adaptability. To overcome these challenges, recent
studies have introduced proactive HO schemes that leverage deep
learning-based time-series forecasting models. Nevertheless, these
approaches still suffer from degraded prediction performance
under diverse UE speed environments due to global distribution
shift, and naively constructing separate models for each mobility
speed is highly inefficient. In this study, we address this ineffi-
ciency by proposing a speed-agnostic unified model. Specifically,
we incorporate the existing Reversible Instance Normalization
(RevIN) technique and introduce our newly proposed method,
Residual Normalization (RN). We apply these normalization
schemes to deep learning-based time-series forecasting mod-
els (DLinear, NLinear, and TCN), and through training and
evaluation on datasets collected at varying mobility speeds, we
demonstrate improved generalization capability of the forecasting
models.

Index Terms—Mobility management, RSRP measurement pre-
diction, proactive handover, time-series forecasting, deep learning

I. INTRODUCTION

The handover (HO) process is critical for maintaining seam-
less connectivity for mobile user equipment (UE) in modern
cellular networks. Conventional HO mechanisms, however, are
fundamentally reactive, initiating a HO only after the serving
cell’s signal quality drops below a predefined threshold. By
addressing link degradation after the fact, this approach suffers
from an inherent latency that leads to increased rates of HO
failures (HOFs), radio link failures, and unnecessary ping-
pong effects. The performance limitations of these legacy
methods underscore the urgent need for a paradigm shift
toward proactive mobility management capable of anticipating
the UE’s future state and network conditions.

To address these shortcomings, proactive HO offers a com-
pelling solution by shifting the decision-making paradigm
from reactive to predictive [1]. The core idea is to forecast
future signal conditions, such as the reference signal received
power (RSRP), to determine the optimal HO timing and
target cell in advance. The success of this strategy, therefore,
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fundamentally depends on the accuracy of the underlying time-
series forecasting.

While recent deep learning models have demonstrated
promising results in time-series forecasting at crucial HO-
related time points such as time-to-trigger (TTT) and minimum
time-of-stay (MTS), their practical deployment faces signif-
icant hurdles, especially in realistic scenarios with variable
UE mobility [2]. A primary issue is the poor generalization
across different speeds; a model trained at one velocity exhibits
performance degradation when the UE’s speed changes, a
well-known issue of distribution shift (see Fig. 1). This failure
to adapt to dynamic mobility patterns is a major drawback.
Furthermore, the naive brute-force alternative of training a dis-
tinct model for every possible speed is operationally infeasible,
as it would require a prohibitive amount of training data and
create an unmanageable deployment architecture.

To address these issues, we propose and evaluate a deep
learning-based speed-agnostic forecasting model for proactive
HO. Our investigation begins with a statistical analysis of
signal distributions across various mobility speeds (e.g., 60,
90, and 120 km/h), characterizing the instance variance and
residuals that challenge model generalization. Based on these
insights, we introduce a novel residual-based normalization
technique and compare its effectiveness against Reversible
Instance Normalization (RevIN) [3]. Our rigorous evaluation
demonstrates that a single model equipped with our proposed
method can accurately forecast RSRP measurements at TTT
and MTS. Critically, we show that this approach generalizes
well to unseen test speeds, achieving significant and more
stable performance improvements over baseline models that
lack normalization in most scenarios.

II. RELATED WORKS

A. Proactive HO

Proactive HO aims to enhance network performance by min-
imizing service interruptions and reducing signaling overhead
[1]. Unlike conventional reactive approaches, where HO is
triggered once a specific signal threshold is crossed, proactive
HO leverages predictive modeling of future signal conditions
to trigger the HO to the target cell at the optimal time. Two
critical parameters in this process are TTT, which predicts
imminent signal degradation to prevent HOFs, and MTS,
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Fig. 1. Signal prediction performance at MTS across mismatched training and testing speeds (column-wise normalized). The metric is MAE; the x-axis
denotes the test dataset speed and the y-axis denotes the training dataset speed. The red box highlights evaluations under matched training and testing speeds,
where performance is generally superior.

which mitigates the ping-pong effect by avoiding unnecessary
consecutive HOs. Recent work [2] has focused on improving
the prediction accuracy of signals (e.g., RSRP) at TTT and
MTS points, thereby reducing HOF rates, minimizing latency,
and ultimately improving user-perceived throughput.

B. Deep Learning Models for Time-Series Forecasting

Time-series forecasting refers to the task of predicting
future sequences (look-forward window) based on previ-
ously observed sequences (look-back window). Recently, deep
learning-based forecasting models have been extensively stud-
ied [4]. Recurrent architectures such as Long Short-Term
Memory (LSTM) [5], Gated Recurrent Units (GRU) [6],
and SegRNN [7] effectively capture temporal dependencies
through sequential processing. Convolutional models, includ-
ing Temporal Convolutional Networks (TCN) [8] and Patch-
Mixer [9], are also widely applied in time-series forecasting
tasks. Furthermore, Transformer-based architectures such as
Informer [10] and Autoformer [11] have demonstrated strong
performance in long-term sequence forecasting. However, de-
spite the introduction of Transformer-based models, simple
linear approaches such as NLinear and DLinear [12] have been
reported to outperform Transformer variants.

In this work, we focus on three time-series forecasting
models previously reported to achieve strong performance in
forecasting RSRP measurements at TTT and MTS [2] — i.e.,
DLinear, NLinear, and TCN — as the baseline methods for
our evaluation.

C. Instance-Wise Normalization and Denormalization

Instance-wise normalization has emerged as a powerful
technique for improving time-series forecasting by addressing
the distribution shift between model inputs and prediction
targets. A prominent example is Reversible Instance Normal-
ization (RevIN) [3], which standardizes each input sequence
before feeding it to the forecasting model and subsequently
reverses the process on the model’s output using learned
statistics. This forces each instance to have zero mean and unit
variance, enhancing training stability and predictive accuracy.
While newer methods like SAN [13] and FAN [14] have since
been proposed, RevIN remains particularly well-suited for our

study of time-series forecasting for improving UE mobility,
as it is less sensitive to input sequence length compared to its
counterparts.

III. PRELIMINARIES

A. Time-Series Forecasting for Proactive HO

Failure to selelct the proper HO target results in degraded
performance and connection failures, such as HOFs and ping-
pong effects [1]. The challenge of making an optimal HO
decision can be addressed by accurately forecasting the RSRP
of relevant cells based on the history of RSRP measurements
collected by the UE.

Let xt be the univariate RSRP measurement at time t. We
define a subsequence of contiguous measurements from time
t1 to t2 as:

xt1:t2 ≜ (xt1 , xt1+1, . . . , xt2).

Then, a forecasting model fθ takes as input the look-back
window of length Win, i.e., xt−Win+1:t, and predicts the look-
forward window of length Wout, i.e., x̂t+1:t+Wout , as follows:

x̂t+1:t+Wout = fθ (xt−Win+1:t) , (1)

where fθ represents a forecasting model with learnable pa-
rameters θ. To optimize the model’s predictive accuracy, we
train it to minimize the mean squared error (MSE) between
the predicted and actual future values. The optimal model f∗

θ

can be found by solving the following:

θ∗ = argmin
θ

E
[
∥x̂t+1:t+Wout − xt+1:t+Wout∥

2
2

]
. (2)

B. Dataset Configuration

The dataset is constructed based on the 3GPP TR 38.744
specifications, reflecting a large-scale cellular system scenario
consisting of 19 base stations (BSs) and 57 cells configured
in a three-sector model. The UE follows a random way-
point mobility model, traversing a single trajectory for a total
duration of 11 hours. The simulation is conducted under three
speed conditions: 60, 90, and 120 km/h.

L3-RSRP (dB) measurements are collected in a 1Tx–1Rx
beamforming environment with an L3 filter coefficient of 4 and
a measurement interval of 40 ms. The collected UE mobility
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Fig. 2. Distributional characteristics according to UE speed. (left) Instance-wise variance distribution showing separability by speed, (middle) residual
distribution across different speeds, and (right) normalized residual distribution obtained by dividing with the speed-specific standard deviation.

traces are segmented into non-overlapping sequences and split
into training, validation, and test sets with ratios of 64%, 16%,
and 20%, respectively. Each sequence is further processed
using a sliding window approach with a stride 1, where the
input and output window lengths are set to 32.

To ensure a fair and controlled evaluation of forecasting
performance, our analysis is based on the signal from a single
cell that primarily acts as the serving cell across all three speed
datasets. Furthermore, we apply min-max scaling for stable
model training.

IV. METHOD

In this section, we investigate the distributional characteris-
tics of each dataset under three different UE speed conditions
(60, 90, and 120 km/h).

A. Variance Distribution According to the UE Speed

This subsection examines whether signal variance can be
used to differentiate UE speeds. As shown in Fig. 2 (left), the
variance distributions for different speeds are distinct enough
to be separated, even with similar overall shapes. This key
observation implies that an input window’s variance contains
implicit, speed-related information. Our strategy leverages this
insight. By removing the variance from the input signal (i.e.,
normalizing it), the forecasting model is encouraged to learn a
general, speed-agnostic representation. The model’s output can
then be made speed-specific by restoring the original variance
information. This process allows a single model to operate
effectively across various UE speeds without being retrained
to a specific one.

However, Fig. 2 also reveals that signal variance presents
significant temporal variability even within a single UE speed.
This intra-speed fluctuation implies that a naive normalization
approach can degrade model performance. To properly address
this, we employ RevIN [3], a technique designed to handle
such distribution shifts, as a key method for mitigating the
effect of input variance in our performance evaluation. More
specifically, RevIN is applied to each time-series forecasting
models based on the following steps:

x̂t = γ

(
xt − Et[xt]√
Var[xt] + ϵ

)
+ β, (3)

ỹt = fθ(x̂t), (4)

TABLE I
STANDARD DEVIATION OF RESIDUALS FOR EACH UE SPEED

speed v σv

60 ≈ 0.4783
90 ≈ 0.5919

120 ≈ 0.6836

ŷt =
√
Var[xt] + ϵ ·

(
ỹt − β

γ

)
+ Et[xt], (5)

where xt = xt−Win+1:t, denotes the input instance and yt =
xt+1:t+Wout its paired target; γ and β are learnable parameters,
while Var[·] and Et[·] represent the variance and mean of the
instance, respectively [3].

Through this process, the forecasting model fθ receives
input signals with reduced speed dependency, thereby learning
predictions less biased toward specific UE speeds. Subse-
quently, RevIN restores the statistical properties of the pre-
dicted signal, enabling the model to adaptively generalize
across various speed environments.

B. Residual Distribution According to UE Speed

In this subsection, we investigate whether UE speed can
be characterized by the distributional properties of signal
variations, namely residuals. A residual represents the change
between consecutive signals and is formally defined as

rt = xt − xt−1. (6)

The distribution of residuals across the entire dataset is illus-
trated in the middle plot of Fig. 2, while the corresponding
standard deviations are summarized in Table I.

It is observed that the standard deviation σv monotonically
increases with UE speed. Moreover, when each residual is
normalized by its respective σv , the resulting distributions
collapse into an almost identical form, as shown in the
rightmost plot of Fig. 2. Based on this observation, we propose
a global normalization and denormalization strategy, which we
refer to as residual normalization (RN).

To achieve speed-agnostic forecasting, we introduce a
methodology centered on residual prediction. Motivated by our
previous observations, the approach first transforms the orig-
inal signal into its residual form using (6). A normalization-
denormalization procedure is then applied to this residual
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series, and the forecasting model is subsequently trained to
predict future residuals instead of the raw signal:

r̃t+1:t+Wout = fθ(rt−Win+2:t), (7)

x̂t′ = x̂t′−1 + r̃t′ , (x̂t = xt, t ≤ t′ ≤ t+Wout). (8)

Our proposed RN method is designed to remove speed-
dependent information from the data. During preprocessing,
we normalize the residuals by dividing them by a global
standard deviation σv , which is calculated for each specific
UE speed. After the model makes a prediction, the output is
denormalized by multiplying it by the same scaling factor:

rt =
rt
σv

, r̃t = r̃t · σv. (9)

This approach is fundamentally different from RevIN. While
RevIN uses instance-wise normalization to handle distribution
shifts in every single input, RN performs a global normaliza-
tion across an entire speed category. The goal here is not to
model instance-level shifts but simply to remove the overall
statistical bias associated with a specific speed.

V. EXPERIMENT

As described earlier, we conduct experiments under three
distinct UE speed scenarios. We train and evaluate three time-
series forecasting models — DLinear, NLinear, and TCN
— using univariate RSRP signals from the specific cell. In
addition to evaluating each model under the same UE speed
as used in training, we further assess their performance on data
collected at different UE speeds. This cross-speed evaluation
enables us to determine the extent to which the proposed
normalization methods enhance the speed-agnostic property
of the models.

A. Experimental Setup
The detailed configurations of the models used in our

experiments are as follows: DLinear, NLinear: We employed
the official implementation provided in [12]. TCN: The model
is constructed with a kernel size of 5 and a stack of 6
convolutional layers. For all models, the hidden dimension is
fixed to 256. Training is performed with the Adam optimizer,
starting from an initial learning rate of 0.001, which decayed
exponentially by a factor of 0.9 at each epoch. The look-
back and look-forward window lengths are both set to 32.
For evaluation, the TTT and MTS are defined as the 4th (160
ms) and 25th (1000 ms) time steps within the look-forward
window, respectively.

The loss function is MSE in all cases. Every model is trained
only on the two specific points corresponding to TTT and
MTS. Therefore, the residual-based approach is designed to
predict the residual between the signal at the last time step
of the look-back window and the signal at the TTT point, as
well as the residual between the signals at the TTT point and
the MTS point. Performance evaluation is conducted using
mean absolute error (MAE) at the TTT and MTS points. All
experiments are conducted on a single GPU machine1.

1CPU: Intel Xeon Gold 6526Y (16 cores, 32 threads); GPU: NVIDIA
A6000 (48GB VRAM).

TABLE II
RESULTS OF DLINEAR, NLINEAR, AND TCN TRAINED ON 60/90/120
KM/H AND TESTED ON 60/90/120 KM/H (FULL CROSS-EVALUATION).
EACH CELL LISTS TTT (160 MS) / MTS (1000 MS). LOWER VALUES

INDICATE BETTER PERFORMANCE; THE BEST IS IN BOLD AND THE
SECOND BEST IS UNDERLINED.

Method DLinear NLinear TCN

Train speed = 60 km/h, Test speed = 60 km/h
Raw 0.822 / 4.396 0.802 / 4.434 0.902 / 4.414
Raw+RevIN 0.723 / 4.417 0.790 / 4.434 0.727 / 4.413
Resi 0.602 / 4.338 0.667 / 4.341 0.814 / 4.472
Resi+Norm (RN) 0.592 / 4.330 0.651 / 4.338 0.550 / 4.323

Train speed = 60 km/h, Test speed = 90 km/h
Raw 1.054 / 5.161 1.035 / 5.248 1.150 / 5.184
Raw+RevIN 0.954 / 5.235 1.017 / 5.246 0.954 / 5.221
Resi 0.782 / 5.126 0.832 / 5.155 0.996 / 5.298
Resi+Norm (RN) 0.765 / 5.125 0.816 / 5.153 0.715 / 5.111

Train speed = 60 km/h, Test speed = 120 km/h
Raw 1.252 / 5.795 1.235 / 5.910 1.359 / 5.835
Raw+RevIN 1.141 / 5.889 1.207 / 5.905 1.139 / 5.879
Resi 0.947 / 5.778 0.972 / 5.830 1.151 / 5.978
Resi+Norm (RN) 0.917 / 5.772 0.954 / 5.827 0.855 / 5.755

Train speed = 90 km/h, Test speed = 60 km/h
Raw 0.756 / 4.399 0.782 / 4.442 0.936 / 4.480
Raw+RevIN 0.738 / 4.424 0.789 / 4.442 0.726 / 4.420
Resi 0.616 / 4.364 0.672 / 4.345 0.776 / 4.431
Resi+Norm (RN) 0.592 / 4.347 0.630 / 4.337 0.567 / 4.352

Train speed = 90 km/h, Test speed = 90 km/h
Raw 0.971 / 5.121 1.001 / 5.227 1.188 / 5.214
Raw+RevIN 0.957 / 5.214 1.010 / 5.229 0.943 / 5.210
Resi 0.784 / 5.133 0.831 / 5.155 0.946 / 5.241
Resi+Norm (RN) 0.751 / 5.118 0.793 / 5.149 0.724 / 5.119

Train speed = 90 km/h, Test speed = 120 km/h
Raw 1.157 / 5.718 1.190 / 5.855 1.395 / 5.806
Raw+RevIN 1.137 / 5.842 1.193 / 5.854 1.121 / 5.836
Resi 0.936 / 5.746 0.968 / 5.824 1.091 / 5.875
Resi+Norm (RN) 0.890 / 5.736 0.931 / 5.822 0.863 / 5.734

Train speed = 120 km/h, Test speed = 60 km/h
Raw 0.770 / 4.472 0.792 / 4.474 0.917 / 4.496
Raw+RevIN 0.755 / 4.443 0.779 / 4.460 0.738 / 4.442
Resi 0.611 / 4.395 0.736 / 4.359 0.712 / 4.443
Resi+Norm (RN) 0.606 / 4.377 0.673 / 4.353 0.594 / 4.383

Train speed = 120 km/h, Test speed = 90 km/h
Raw 0.978 / 5.157 1.003 / 5.242 1.156 / 5.215
Raw+RevIN 0.977 / 5.226 0.999 / 5.244 0.951 / 5.221
Resi 0.768 / 5.157 0.881 / 5.171 0.882 / 5.241
Resi+Norm (RN) 0.764 / 5.139 0.835 / 5.169 0.744 / 5.140

Train speed = 120 km/h, Test speed = 120 km/h
Raw 1.156 / 5.700 1.183 / 5.840 1.356 / 5.785
Raw+RevIN 1.159 / 5.831 1.182 / 5.852 1.127 / 5.826
Resi 0.908 / 5.754 1.009 / 5.836 1.029 / 5.862
Resi+Norm (RN) 0.903 / 5.736 0.974 / 5.836 0.875 / 5.735

B. Results

Table II summarizes the forecasting performance based on
the intra and inter UE speed scenarios (60, 90, and 120
km/h). Here, the raw input refers to the RSRP measurements
preprocessed only by min-max scaling, while the residual
input denotes the signal obtained by applying the residual
transformation defined in (6) on top of the raw input. When
normalization is applied, RevIN is applied to the raw input,
whereas for the residual input, normalization is conducted by
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Fig. 3. Effect of RevIN on TCN model performance at the TTT prediction
point. Each column is adjusted by subtracting its diagonal entry, enabling an
evaluation of the model’s generalization capability across different UE speeds.

Fig. 4. Effect of RN on TCN model performance at the TTT prediction
point. Each column is adjusted by subtracting its diagonal entry, enabling an
evaluation of the model’s generalization capability across different UE speeds.

dividing each residual by the global standard deviation σv for
each UE speed in the training set.

Forecasting Performance. As presented in Table II, both
RevIN and our proposed RN consistently improve prediction
accuracy over the baseline at the TTT. The RN method,
when applied to signal residuals, yields the most significant
gains across all evaluated backbones (i.e., DLinear, NLinear,
and TCN), indicating that residual-based forecasting is highly
effective for short-term prediction. Furthermore, for the longer-
horizon forecasting at the MTS, our proposed approach also
demonstrates superior performance compared to the baseline,
confirming its superiority for both short and long-term fore-
casting.

Experiment on Different UE Speed. Our cross-speed
evaluation results suggest that a single, unified forecasting
model can be robust to varying UE speeds. This is evidenced
by Figs. 3 and 4, which show that both RN and RevIN
significantly reduce the performance gap when a model is
tested on speeds unseen during training. Both normalization
methods effectively mitigate the degradation from speed varia-
tions, with our residual-based approach consistently providing
performance gains (Table II). This capability eliminates the
practical need for deploying and maintaining separate, speed-
specific forecasting models.

Comparison of Normalization Methods. A key dis-
tinction between RevIN and RN emerges in long-horizon
forecasting. While both methods improve short-term (TTT)
prediction accuracy, Table II shows that only RN maintains this
advantage for the long-term (MTS) task; RevIN’s performance,
in contrast, degrades. We hypothesize that RevIN’s learnable

parameters become biased toward short-term dependencies,
hindering the model’s ability to capture the long-range patterns
necessary for MTS prediction. This suggests that RN is a more
robust and reliable normalization strategy for speed-agnostic
mobility management across varying forecast horizons.

VI. CONCLUSION

In this work, we have demonstrated the feasibility of a
single, speed-agnostic forecasting model for proactive HO. We
discover that training on signal residuals consistently improves
performance and that normalization techniques, namely RN
and RevIN, enable robust generalization across diverse user
speeds unseen during training. This obviates the need for
multiple, speed-specific models. However, we identify two
limitations for future work. First, the proposed RN method
requires sufficient samples to estimate statistics specific to
each UE speed, a challenge in real-time scenarios; future
work could investigate models that predict these statistics
for unseen speeds. Second, long-horizon prediction accuracy
remains limited. To address this, we will explore multivariate
time series from neighboring cells and advanced architectures
capable of integrating this information to build more reliable
data-driven HO frameworks.
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