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Abstract—As part of ongoing standardization efforts in
5G-Advanced for artificial intelligence (AI) and machine
learning (ML)-based beam management (BM), model
adaptation framework is proposed in this paper as a
key lifecycle management (LCM) mechanism to ensure
reliable model performance in dynamic wireless envi-
ronments. The proposed approach enables the network
to proactively respond to performance degradation by
selecting and activating a more suitable model based
on support information and user-side reporting. The
superiority of the proposed method over non-adaptive or
dataset-only approaches in maintaining beam prediction
accuracy is demonstrated by simulation results, highlight-
ing its effectiveness as a robust and scalable solution for
future Al-native 6G systems.

Index Terms—lifecycle management, 3GPP, beam man-
agement, machine learning, artificial intelligence.

I. INTRODUCTION

HE transition from 5G to 6G marks a paradigm
shift toward intelligent, data-centric networks,
where connectivity is fundamentally redefined through
the native integration of artificial intelligence (AI)
and machine learning (ML) technologies [1]. With
the emergence of 5G-Advanced, Al-native air interface
beam management (BM) has been highlighted as a key
use case in 3GPP Release 18 [2]. To address the ineffi-
ciencies of traditional BM caused by measurement and
reporting overheads, AI/ML-based beam prediction has
been proposed to reduce signaling and latency [3].
Only a subset of beams is measured in AI/ML-based
beam prediction, and the results are leveraged as input
to an AI/ML model for predicting the optimal downlink
beam. In this framework, Set A denotes the complete
set of candidate downlink beams, whereas Set B refers
to a subset used for model input, which may either be a
subset of Set A or consist of wider beams. As AI/ML-
driven communication systems grow in complexity
within 3GPP, model lifecycle management (LCM) has
emerged as a critical issue [4].
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In particular, 3GPP RAN working group (WG) 2
has explored functionality-based LCM approaches [5].
However, current specifications only define signaling
procedures for the exchange of AI/ML functionalities,
without addressing mechanisms to handle performance
degradation. In such scenarios, model management
operations such as retraining on the user equipment
(UE), replacing the current model with an alternative,
or training a new model architecture become neces-
sary. Accordingly, clearly defined signaling procedures
and standardized specifications are required to support
these operations.

In this work, we define model adaptation as a
model management operation triggered under perfor-
mance degradation. We propose a signaling procedure
that enables performance-aware model management by
leveraging network (NW)-side knowledge of the op-
erating environment. Unlike conventional approaches
based solely on static signaling, the proposed method
ensures model reliability through environment-aware
performance evaluation, thereby enabling robust model
adaptation. The ongoing discussions on LCM are also
addressed in this work, with the need for advanced
management strategies beyond simple model exchange
signaling being highlighted.

II. SYSTEM MODEL
A. Signal Model

In this work, we investigate a multi-user multiple-
input multiple-output (MU-MIMO) system where a
base station (BS), equipped with a uniform planar array
(UPA) of M antennas, simultaneously serves U single-
antenna users. The received signal vector at the users,
denoted by y = [y1,%2,--.,yu|’, is given by

y = HFs +n. (1)

Here, H = [hy, hy, ..., hy]# € CY*M represents the
channel matrix, where each row hﬁl corresponds to the
channel vector between the BS and the u-th user. The
matrix F € CM*U denotes the beamforming matrix
applied at the BS. The transmitted signal vector is
represented by s = [s1, 2, ..., sy, with the elements
satisfying the normalization condition E[|s,|?] = 1.
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And n denotes the additive white Gaussi
with n ~ CN(OU,O'?LIU).

The channel is modeled ba
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where oy, ¢ ~ CN(0,07) denotes the
gain, and 6, ¢, ¢, ¢ represent the zenit
angles of departure, modeled as Lapla
with angular spread oy [7]. The array 1copoioe vevvn
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where x = 27 /) is the wavenumber, and d is the inter-
element spacing [8].

In 5G NR, the beamforming codebook C is con-
structed using the Kronecker product of discrete
Fourier transform (DFT)-based vectors along horizon-
tal and vertical dimensions [9]. The horizontal and
vertical components are defined as

cey
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where h = 0,...,Qn, — 1, v =0,...,Q, — 1, and
Qn = OpMy, Q, = O,M,. The full codebook is
given by
C:{Xh®yv|h€ [O,th]-L (S [O7Qv71]}'

(6)
B. 3GPP AI/ML for Beam Prediction

Set A represents the complete set of beams avail-
able for downlink transmission, while Set B denotes
a subset of beams selected from Set A specifically
for measurement purposes [4]. The prediction process
utilizes the measurement results obtained from Set B
to determine the optimal downlink beam within Set
A, enabling efficient spatial-domain beam selection.
Set A corresponds to the full codebook C, and Set B
comprises a subset of codevectors extracted from C.
The relationship between Set A and Set B is depicted
in Fig. 1, along with the variability in Set B index pat-
terns. The beams included in Set B are shaded in blue
in the figure. Assume that the BS employs a uniform
planar array with M = M, x M}, = 4x8 = 32 antenna
elements. For the construction of the codebook C, the
oversampling factors are set to (Op,0,) = (1,2),
resulting in Ny = 64 codevectors.
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Fig. 1. Set A and Set B configurations for different index pattern.

The model performance is evaluated using two met-
rics: egrsrp, Which is based on the reference signal
received power (RSRP), and Top-K/I accuracy. The
first metric, egsrp, quantifies the average difference in
L1-RSRP between the true optimal beam index and
the index predicted by the model. In addition, Top-
K/1 accuracy is used as a key performance indicator
(KPI) for prediction accuracy. It is defined as the ratio
of instances where the true best beam index is included
within the Top-K predicted beam indices. This metric
is well-suited for evaluating two-stage beam selection
process, where the Top-/ beams predicted from Set B
are further swept to identify the best beam.

III. MODEL LIFECYCLE MANAGEMENT

A. Model Lifecycle Management in 3GPP
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LCM of AI/ML-based beam management is cur-
rently under active discussion within 3GPP as a critical
mechanism to ensure robust model operation through-
out various stages, including data collection, model
training, inference, monitoring, and transfer [4]. In
particular, 3GPP RAN WGI1 focuses on specifying
signaling procedures for both UE-side and NW-side
AI/ML model management, including aspects such as
data collection and applicability. Additionally, mecha-
nisms for model performance monitoring and inference
result reporting are under consideration [10].

Within 3GPP WG2, three categories of functionali-
ties are defined for managing UE-side AI/ML models:
supported, applicable, and activated functionalities [5].
Supported functionalities indicate model operations
that the UE can handle and are reported via the UE-
CapabilityInformation message. Applicable functional-
ities are those ready for inference, while activated func-
tionalities are currently in use. The signaling sequence
begins with the NW sending a UECapabilityEnquiry to
request the supported functionalities. The UE responds
with a UECapabilityInformation message, after which
the NW provides inference conditions through the
RRCReconfiguration message. Based on this config-
uration and internal model states, the UE identifies
applicable functionalities and reports them, and the
NW activates the selected ones.
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B. Proposed Model Lifecycle Mai

The LCM framework currently
3GPP does not provide explicit signaling procedures
or information exchange to manage AI/ML models
under performance degradation. To address this gap,
we propose a model adaptation mechanism as an LCM
technique designed to ensure performance stability in
such scenarios. Model adaptation is defined as a set
of management operations triggered when the KPI
of beam management, based on the deployed AI/ML
model, falls below a predefined threshold. The possi-
ble operations include retraining the existing model,
switching to an alternative model, or deploying a new
model architecture that is better suited to the current
conditions. To ensure robust and environment-aware
adaptation, the decision process is guided by support
information maintained and provided by the NW.

Figure 2 illustrates the NW-side structure of the
support information utilized during model adaptation.
The UE transmits available model-related identifiers
(IDs) to the NW. This includes beam set IDs which
contains information about the Set A/B configurations
used during model training and inference. Model ID
which represents model-specific attributes such as ar-
chitecture and type and dataset ID which indicates
the specific dataset or dataset category used in model
training procedure.

Based on the model information reported by the
UE, the NW generates and delivers adaptation infor-
mation by utilizing corresponding support information.
The support information includes associated IDs that
describe beam-related parameters such as beamwidth
and direction, as well as IDs for models that are not
suitable for the current environment. The adaptation
information transmitted to the UE contains IDs of
recommended models that are appropriate for the pre-
vailing conditions, along with an evaluation dataset ID
that specifies the dataset used to assess the performance
of these recommended models.
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Fig. 3. Proposed signalling procedure.

C. Model Adaptation Signaling Procedure

Figure 3 illustrates the signaling procedure for model
adaptation in beam management. When the NW detects
performance degradation of the beam management
model operating at the UE, the following steps are
executed:

e Step 1: Upon identifying the current model as
inadequate, the NW appends its ID to the non-
recommended model list and sends a ModelAdap-
tationRequest message to instruct the UE to de-
activate the current model, revert to a legacy
beam management scheme, and initiate the model
adaptation process.

Step 2: The UE acknowledges the request by
replying with a ModelAdaptationResponse mes-
sage, which also includes information about the
adaptable functionalities.

Step 3: Based on the support information and
the functionalities reported by the UE, the NW
selects recommended models and transmits a
ModelAdaptationlnformation message containing
the recommended model IDs. If no appropriate
candidate exists, only the support information is
sent, and the UE is instructed to train a new model
that avoids overlap with the non-recommended
models.

Step 4: After receiving the adaptation informa-
tion, the UE evaluates each recommended model
using the provided dataset and selects the one that
meets the predefined KPI thresholds, such as beam
prediction accuracy or throughput. The selected
model ID is reported to the NW through a model
activation request.

Step 5: The NW finalizes the adaptation process
by sending a ModelAdaptationActivation message
to instruct the UE to activate the selected model.



== Training
3 — — Validation
25
2
o 2r\
|
150V
N\
1
0.8
>
8
5 0.6
Q
o
©
204
l2 =—— Training
= = Validation
0.2 -

15 20 30
Epochs

10 25

Fig. 5. Average top-1 accuracy curves for training and validation
across epochs.

IV. PERFORMANCE EVALUATION
A. Simulation Setup

To assess the proposed framework, we consider a
mobility scenario involving U = 10 single-antenna
UEs moving within a hexagonal cell with an inter-site
distance of 200m. In line with recent 3GPP discussions
on data collection for UE-side AI/ML models via
vendor-operated servers [11], the training dataset is
constructed by partitioning the coverage sector into
six angular regions centered around the BS. For each
region, data samples were collected from 10,000 ran-
domly distributed points. During inference, data collec-
tion points are determined based on each UE’s mobility
profile, assuming a default velocity of 3km/h and a
sampling interval of 20ms. The BS is positioned at
(0,0)m at a height of hgs = 25m, while UEs are
placed at a height of hyg = 1.5m. The BS operates
at a carrier frequency of f. = 30GHz within the FR2
band, with adjacent antenna elements spaced by half a
wavelength. The array is configured with a downward
tilt angle of 20° in elevation and 30° in azimuth.
The channel model is based on L = 6 multipath
components, each with equal average power and an
angular spread of o = 5°, following the link-level
simulation assumptions described in [4].

For model adaptation, three identifiers are consid-
ered: Set B ID, model ID, and dataset ID. As illustrated
in Fig. 1, three distinct Set B patterns are used. Each
model is implemented using a deep neural network
(DNN), with 3, 4, or 5 hidden layers corresponding
to each model ID. The dataset IDs correspond to the
six angular training regions defined earlier. These six

1520

regions evenly divide the coverage area around the BS
based on azimuthal angle. A total of 54 models were
created by combining 3 Set B IDs, 3 model IDs, and
6 dataset IDs. We assume that the UE is provisioned
with all 54 models stored locally. Model retraining is
excluded from the evaluation, as this study focuses
on the feasibility and effectiveness of selecting an
appropriate model from the pre-stored candidates based
on performance-adaptive signaling under degradation
scenarios.

The details of the model training process are summa-
rized as follows. The training dataset was partitioned
into training and validation sets with a ratio of 9:1.
All models were trained with a fixed learning rate of
0.001, LeakyReLU activation applied to each hidden
layer, the Adam optimizer, and cross-entropy loss. The
batch size was set to 50, and training was performed for
30 epochs. Figures 4 and 5 present the average loss and
Top-1 accuracy of the 54 models on the validation and
training datasets, respectively. The results show that
both metrics begin to saturate after approximately 20
epoclgs, and the validation performance indicates that
no overfitting occurred during training.

The LCM procedure used in the experiment is de-
scribed as follows. The UE-side model continuously
performs inference over 5,000 time steps. To monitor
performance degradation, the system periodically eval-
uates the model at intervals of 7icm. A degradation
event is triggered when the beam prediction accuracy
metric, ersrp, drops below a predefined threshold
Yrsrp, relative to the reference value measured at
the time of initial model activation. If the model is
replaced, the reference value is updated based on the
first activation of the newly selected model. Upon
detecting degradation, model adaptation is initiated.
The evaluation dataset used in the adaptation process
consists of 5,000 randomly sampled locations within
the current sector where the UE is situated. Each rec-
ommended model is evaluated using this dataset, and
the model exhibiting the best performance is selected
for subsequent operation.

B. Simulation Result

Figure 6 illustrates the variation in egsgp over 5,000
inference time steps for each LCM approach. In this
experiment, Tycym is set to 1 second, and gsgp 1S
set to 5dB. The only dataset ID method refers to a
scheme in which model adaptation is performed solely
based on the dataset ID corresponding to the UE’s
current region. In contrast, the non-LCM method uses
the initially selected model throughout all inference
steps without any LCM. As shown in the results, the
proposed model adaptation approach maintains consis-
tent performance over time, with minimal fluctuations
in error values. On the other hand, the only dataset ID
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method exhibits higher variability in egrsgrp,y in , and
the non-LCM method shows a gradual increase in error
as time progress

Figures 7 and 8 illustrate the variation in egggp With
respect to different values of the degradation threshold
vrsrp and the LCM evaluation interval Ticym. The
results from both experiments exhibit similar trends.
The non-LCM method maintains a consistently high
error value above 4 dB regardless of the parameter
changes, as it does not incorporate any LCM. In
contrast, the only dataset ID method shows sensitivity
to the parameter settings, with increasing error values
observed when the threshold or evaluation interval is
increased. Meanwhile, the proposed model adaptation
approach demonstrates robust performance across all
parameter settings, indicating its resilience to variations
in LCM configurations.

Figure 9 presents the Top-K/1 accuracy performance
for the 10th, 50th, and 90th percentile users in the
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inference dataset. The proposed model adaptation con-
sistently outperforms the other approaches across all
values of K. Notably, for K = 1, it achieves over
70% accuracy for the 10th percentile users, surpassing
the only dataset ID method by more than 20% and
the non-LCM method by over 50%. For the 90th
percentile users, however, all three methods exhibit
similar performance.

V. CONCLUSION

In this study, we propose a model adaptation mecha-
nism as a LCM technique to sustain the performance of
AI/ML-based wireless communication models, a topic
of increasing importance in the evolution from 5G to
6G. The proposed mechanism enables the network to
deliver adaptation information upon detecting perfor-
mance degradation, thereby facilitating the selection
of a more robust model tailored to the user environ-
ment. Simulation results demonstrate that the proposed



approach consistently outperforms both non-LCM and
alternative LCM strategies. Although the dataset used
in this study is synthetic and the evaluation scenario
simplified, the results provide a clear proof-of-concept
for the feasibility of model adaptation. Future work will
focus on validating the framework with standardized
or real-world datasets, quantifying signaling overhead
and latency, and addressing scalability concerns such
as model storage at the UE. Further extensions include
integrating model retraining into the LCM framework
and expanding applicability beyond beam management
to other AI/ML-driven use cases in wireless systems.
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