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A 46-GHz DFB+R Laser Utilizing Detuned-Loading
and Photon-Photon Resonance Effects for 6G Data
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Abstract— We report on the distributed feedback (DFB) + R
laser that employs an integrated passive waveguide and a 3 %
reflectivity coating on the front facet to induced the detuned-
loading and photon-photon resonance (PPR) effects. Our device
exhibits a 3-dB electro/optical (E/O) bandwidth of around 46 GHz
at 25°C, supporting the transmission of PAM-4 signals beyond
100 Gbps.

Index Terms— 6G, intra data center, optical communication,
directly modulated laser, photon-photon resonance

[. INTRODUCTION

As 6G communication technologies rapidly evolve, there is
an unprecedented demand for wireless capacity with high
reliability, low latency, and massive data transmission rates.
This includes the short-packet and detection-based Ultra-
Reliable Low Latency Communication (URLLC) services
which served as a foundation for the initial deployment of 5G
networks. In response to these growing demands, the
transmission capacity of data center networks is undergoing an
explosive expansion. This is largely because a vast majority of
the data traffic generated by 5G and future 6G networks must
be processed, stored, and distributed by these powerful data
hubs. To accommodate this dramatic increase in data
throughput, there is an urgent need for the development of next-
generation optical modules supporting data rates of 800-Gbps
and 1.6-Tbps speeds.

In response to this requirement, the industry has recently
begun a standardization effort, with the 800G-FR4 Multi-
Source Agreement (MSA) having already released
specifications for 800G optical modules, which adopt a 4 x 200-
Gbps/lane optical interface based on 112.5-Gbaud PAMA4
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modulation [1,2]. Furthermore, the IEEE 802.3dj task force is
actively considering a standard for 1.6-Tbps Ethernet for
distances ranging from 0.5 km to 2 km, proposing the use of
106.25-Gbaud PAM4 signals [3].

Accommodating the rapidly increasing data traffic requires
the implementation of high-speed optical sources with large
modulation  bandwidths and advanced performance
characteristics. Various high-speed intensity modulation
schemes have been demonstrated, including electro-absorption
modulator integrated laser (EML) [4-7], membrane lasers [8,9],
and directly modulated laser (DML) [10,11]. Among these
candidates, DMLs are particularly promising due to their simple
fabrication, low power consumption, compactness, and cost-
efficiency. Owing to these advantages, DMLs are regarded as
strong candidates for utilization in next-generation high-
performance data centers.

To further enhance the modulation bandwidth, the detuned
loading effect [12,13] and photon—photon resonance (PPR)
[14,15] have been extensively researched. To induce these
effects, DML structures integrating passive waveguides or
distributed Bragg reflectors (DBRs) have been developed.
These designs have successfully achieved modulation
bandwidths exceeding 45 GHz [16-21].

In this study, we propose a DFB+R laser specifically
engineered to satisfy the demands of 6G data centers. By
incorporating the detuned-loading effect and PPR effect and
precisely controlled by facet reflectivity engineering, we
achieve a stable operation and supports data rates exceeding
100 Gbps.

II. EXPERIMENTAL RESULTS

Figures 1(a) and 1(b) shows the schematic and scanning
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electron microscope (SEM) image of the fabricated a DFB + R
laser. Our device is formed on compressively strained
InAlGaAs multiple quantum wells (MQWs), a separate
confinement heterostructure (SCH) layer, and an asymmetric
grating layer for single mode lasing. The DFB section of our
device has a length of 130 um, while a 120 um passive
waveguide section is monolithically integrated using a butt-
joint process.
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Fig. 1. (a) Schematic and (b) SEM image of the fabricated a
DFB + R laser.

Unlike conventional DFB laser diodes, which typically apply
high-reflection (HR) and anti-reflection (AR) coatings on the
rear and front facets respectively, our device applies an HR
coating on the rear facet (DFB side) and a low-reflectivity
coating (~3%) on the front facet (passive waveguide side). A
low-reflectivity front facet coating (~3%) is intentionally
applied to effectively induce both the detuned-loading effect
and photon—photon resonance (PPR).

Figure 2 shows the optical output characteristics of fabricated
a DFB + R laser under different temperature conditions. The
threshold currents at 25°C is 5mA, and the output power
increases linearly up to approximately 56 mA, where a distinct
kink is observed. This kink is attributed to the PPR effect, which
is induced by the interaction between the main mode and a side
mode. As a result of this phenomenon, our device can achieve
higher modulation speeds compared to conventional DFB laser
diodes.

Figure 3 shows the optical spectra of the fabricated DFB + R
laser under various bias conditions. Our device exhibits a side
mode suppression ratio (SMSR) exceeding 50 dB across the
entire current range, and a PPR-induced side mode (fppg) is
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Fig. 2. Optical output powers of a DFB + R laser depending

on the bias currents at 25 °C.
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Fig. 3. The optical spectra of a DFB + R laser at various bias
conditions.

observed at approximately 56 mA. The frequency spacing
(Afppr) between the main mode and fppgp is approximately
36 GHz, which enables estimation of the corresponding 3-dB
bandwidth.
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Fig. 4 Measured E/O response curves of DFB + R laser from
20 to 56 mA.

Figure 4 shows the electro-optical (E/O) response curves of a
DFB + R laser chip die-bonded on a copper—tungsten (CuW)
block with a flexible printed circuit board. The solid lines
represent the measured E/O response at bias currents ranging
from 20 to 56 mA. In the low-current region, our device exhibits
characteristics dominated by its intrinsic relaxation oscillation
frequency (f,)) similar to conventional DMLs. As the bias
current increases to the mid-current region, a noticeable
enhancement in the 3-dB bandwidth is observed due to the
detuned-loading effect. In the high-current region, additional
bandwidth broadening occurs due to PPR, leading to a
measured 3-dB bandwidth of approximately 46 GHz at 56 mA.

(2)100 Gbps (b)112 Gbps

Fig. 5 Eye diagrams at (a)100 Gbps, (b) 112 Gbps PAM-4
modulations with [ = 52 mA.

Figure 5 presents the back-to-back (BTB) eye diagrams for
PAM-4 modulation at 100 Gbps and 112 Gbps, both measured
with a bias current of 52 mA. As depicted in Fig. 4, a DFB + R
laser exhibits a 3-dB bandwidth of approximately 46 GHz,
significantly influenced by the PPR effect. Eye diagram
measurements were conducted by precisely adjusting the bias
current to operate within the peak bandwidth region. For quality
assessment, a sampling oscilloscope was used to evaluate the
extinction ratio (ER) and transmitter and dispersion eye closure
quaternary (TDECQ). We obtained an outer ER of 3.549 dB
and a TDECQ of 0.93 dB at 100 Gbps, and an ER of 3.553 dB
and a TDECQ of 1.26 dB at 112 Gbps. These results clearly
indicate that the proposed device is capable of supporting PAM-
4 modulation signals exceeding 100 Gbps, demonstrating its
strong potential for use in high-speed optical transmitters.

III. CONCLUSION

In this study, we have experimentally demonstrated the
potential of DFB + R laser as an optical transmitter operating
beyond 100 Gbps under PAM-4 modulation. Our devices
employ a 3% reflectivity coating on the front facet to induce
both the detuned-loading and PPR effects. We obtained a Afppg
of approximately 36 GHz at 56 mA, and E/O response
measurements confirmed a 3-dB bandwidth of around 46 GHz.
At data rates of 100 Gbps and 112 Gbps, the measured dynamic
outer ERs were 3.549 dB and 3.553 dB, respectively, and the
corresponding TDECQ values were 0.93dB and 1.26dB,
respectively. These results validate the feasibility of the
proposed device as a compact, high-speed optical source for

next-generation data center applications.
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