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Abstract—Class imbalance is a critical challenge in supervised
learning, where models often become biased toward majority
classes and fail to effectively learn from minority samples. This
issue is particularly pronounced in real-world domains such as
industrial monitoring, where abnormal or fault-related events are
rare by nature. In this paper, we propose an adaptive contrastive
learning framework that addresses class imbalance by dynami-
cally combining classification loss and supervised contrastive loss,
based on the degree of imbalance in the dataset. To validate the
effectiveness of our method, we conduct experiments using public
anomaly detection datasets and open-source classification models.
The results demonstrate that the proposed framework improves
minority class prediction while maintaining overall accuracy.

Index Terms—Class imbalance, Contrastive learning, Deep
learning.

I. INTRODUCTION

Supervised learning models have achieved remarkable suc-
cess in various classification tasks across domains such as
computer vision, natural language processing, and medical
diagnosis. Their widespread success relies heavily on the
availability of large-scale labeled datasets that are well bal-
anced across classes. However, this assumption does not hold
in many real-world applications, where data often exhibit
substantial class imbalance. In such scenarios, models tend
to overfit to the dominant class distribution, leading to poor
performance on underrepresented classes [1], [2].

Class imbalance is particularly problematic in safety-critical
domains, including industrial monitoring, autonomous sys-
tems, healthcare diagnostics, and disaster response [3]-[5]. In
these settings, most of the collected data correspond to routine
or normal events, while abnormal, anomalous, or hazardous
events occur infrequently. For instance, in aerial surveillance
for emergency response, images depicting disasters such as
fires or floods are much rarer than those depicting normal
scenes. Despite their low frequency, these minority class
instances are often of highest practical importance, and failure
to detect them accurately may result in significant safety,
operational, or financial consequences [6].
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Moreover, class imbalance frequently results from inherent
characteristics of real-world data collection processes. Data
acquisition in critical domains is often costly, time-consuming,
or even dangerous, leading to limited samples for rare or
hazardous events. This further exacerbates the challenge by
constraining the diversity and quantity of available data for
minority classes, ultimately amplifying the biases learned by
supervised models. Additionally, minority class instances may
exhibit greater variability or complexity, requiring models
to learn discriminative representations from a comparatively
small set of challenging examples. These conditions highlight
the necessity of developing specialized training strategies to
ensure balanced performance across all classes.

This imbalance not only affects the model’s ability to
generalize but also introduces bias during training [7]-[9].
Conventional classification losses such as cross-entropy treat
each instance equally, thereby favoring classes with more data.
As a result, minority class samples contribute less to the loss
and are under-emphasized during optimization. This leads to
skewed decision boundaries and performance disparities across
classes.

To address this challenge, we propose a method to miti-
gate performance bias under class-imbalanced conditions by
integrating an adaptive contrastive learning framework into
existing classification model architectures, without modifying
the dataset or altering the core model architecture. proposed
framework dynamically combines a class-weighted cross-
entropy loss and a supervised contrastive loss, where the influ-
ence of each loss component is adjusted based on the degree of
class imbalance present in the data. Furthermore, we introduce
a temperature-scaling mechanism in the contrastive loss to
adaptively control the sharpness of similarity discrimination
in proportion to imbalance severity.

We validate proposed approach through experiments on
public datasets for anomaly detection using open-source classi-
fication model. By constructing synthetic scenarios with vary-
ing class imbalance ratios, we demonstrate that our method
improves model robustness and prediction performance for
minority classes, while maintaining high overall accuracy. The
results highlight the framework’s ability to address imbalance
effectively and its potential for integration into real-world
safety-critical applications.
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Fig. 1. Overview of the proposed adaptive contrastive learning framework. The architecture includes a general classification structure consisting of a feature
extractor and a classification head, and integrates a contrastive learning structure consisting of an encoder and a prediction head. To mitigate performance
bias caused by class imbalance, the framework computes a class-weighted cross-entropy loss and a temperature-scaled supervised contrastive loss based on
the class distribution and the degree of imbalance, and dynamically combines them to train the model.

II. METHODOLOGY

This study designs an adaptive contrastive learning frame-
work aiming to enhance classification robustness under class-
imbalanced conditions by jointly utilizing classification and
representation learning objectives. The overall architecture of
the proposed framework is illustrated in Fig. 1.

The upper part of proposed framework follows a standard
supervised learning pipeline, where a labeled dataset is used to
train a classification model composed of a feature extractor and
a classification head. Outputs of feature extractor are passed
through the original classification head to produce class logits,
which are used to calculate a classification loss.

In the lower part of proposed framework, the feature ex-
tractor is reused as an encoder to generate high-level repre-
sentations from the input data. These representations are then
fed into the projection head that maps the encoder outputs
into a lower-dimensional embedding space. This projection is
used to compute a supervised contrastive loss that encourages
the model to bring representations of the same class closer
together while pushing those of different classes apart.

The final training objective combines both the classification
and contrastive losses, which is weighted adaptively based on
the degree of class imbalance. The proposed framework con-
sists of three key components to address imbalance: a class-
weighted cross-entropy loss, a temperature-scaled supervised
contrastive loss, and an adaptive loss composition strategy.

A. Class-Weighted Cross-Entropy Loss

Conventional classification models are typically trained
using the cross-entropy loss, which aims to maximize the
likelihood of the correct class label given the model’s output.

Formally, the standard cross-entropy loss for a sample (z;,y;)
is defined as:

eXP(liyyi )

———— ()
>y exp(li;)

N
1
LcE = N Zl logpy,, where p,, =

Here, [; ; represents the logit for class j, C is the total
number of classes, and N is batch size. While cross-entropy
loss is effective for balanced datasets, it performs poorly in
class-imbalanced settings, as it tends to bias predictions toward
majority classes. To address this problem, we introduce a
class-weighted cross-entropy loss Lwcg that assigns greater
importance to minority classes.

N

Lwce = — Z wy, log py, 2
i=1

where w,, is the weight corresponding to the class y;, defined

as wy, = %, with f,, representing the relative frequency of
Yi . .

class y; in the dataset. This class-weighted cross-entropy loss

can mitigate the bias toward majority class predictions.

B. Temperature-Scaled Supervised Contrastive Loss

Supervised contrastive learning (SupCon) addresses the
limitation of CE by considering relationships between samples
within the same class [10]. Instead of treating each sample
independently, it encourages the model to learn embeddings
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where samples from the same class are closer together in the
feature space. The supervised contrastive loss is defined as:

Z —log

pEP(i)

exp(Z; - Zp/T)
2(11\;1 1[(17&1'] exp(gi . ga/T)
3)
where Z; and Z, are normalized contrastive features, P(¢)
denotes the set of positive samples (same class) for sample
i, and 7 is the temperature hyperparameter. Although SupCon
improves representation learning by considering inter-sample
similarities, it does not explicitly address class imbalance or
dynamically adapt to different data distributions. In particular,
using a fixed temperature 7 can limit its flexibility across
datasets with varying imbalance levels. To address this, we
introduce temperature scaling that adapts the temperature
dynamically based on the degree of class imbalance.
Specifically, we define the imbalance level o as the standard
deviation of the class distribution:

S
CSupCon = Z TN
2 TP

o = StdDev ({p1,p27---7p0})7 (4)

where p. denotes the relative frequency of class ¢, and C' is
the total number of classes in the dataset.
We then compute the adaptive temperature 7 as:

T=clip(10- (1 —0), Tmin, Tmax) o)

where 79 is a base temperature value, and clip (x, a, b) denotes
element-wise clipping to the range [a, b]. The bounding values
Tmin and T, are used to ensure numerical stability.

This adaptive scaling ensures that the contrastive objective
becomes sharper when the class distribution is highly imbal-
anced (i.e., large o) and more relaxed when the distribution
is relatively balanced. It allows the model to more effectively
differentiate between classes under varying data conditions.

C. Adaptive Loss Composition

To integrate both the class-weighted classification loss and
the temperature-scaled supervised contrastive loss, we need
to formulate a unified training objective. In order to flexibly
control the influence of each component, we introduce an
adaptive weighting mechanism based on the degree of class
imbalance.

Let Lwcg denote the class-weighted cross-entropy loss (as
defined in Section I1I-A), and Lsypcon denote the supervised
contrastive loss with temperature scaling (as described in
Section II-B). We define the total loss as:

Etotal = [:WCE + A ESupCom 6)

where ) is a contrastive loss weight that is dynamically scaled
based on the imbalance level o introduced in the previous
section.

The contrastive loss weight is then defined as:

)‘ = Chp ()‘0 : (1 + 0); )\mina )\max) ) (7)

where )\ is a base scaling factor. This formulation increases
the relative importance of the contrastive loss in highly im-
balanced settings, helping the model to more effectively learn
from underrepresented classes. When the class distribution is
more balanced, the influence of contrastive learning is reduced
accordingly, allowing the classification loss to dominate. This
adaptive composition strategy enables the model to respond to
varying degrees of imbalance.

III. EXPERIMENTAL RESULTS

In this section, we discuss the experimental results for
various class imbalance scenarios using public datasets and
open source classification models to evaluate the proposed
framework.

A. Experimental Setup

We conduct experiments on the AIDER dataset (Aerial
Image Database for Emergency Response applications) [11],
a publicly available dataset designed for scene classification
in disaster response scenarios. The dataset contains aerial
imagery labeled with five semantic categories: collapsed
buildings, fire, flooded areas, traffic accidents, and normal
scenes. These categories represent a mix of emergency and
non-emergency conditions typically encountered in real-world
aerial monitoring.

To simulate varying degrees of class imbalance, we con-
struct five synthetic training scenarios by sampling different
proportions of each class from the original dataset. In each
scenario, the training set contains 1,500 images, and the
test set contains 100 images, keeping the total sample size
consistent across all experiments. The class distributions for
each scenario correspond to the five classes listed in the order:
collapsed buildings, fire, flooded areas, traffic accidents, and
normal, and are defined as follows:

e Scenario 1: [0.05, 0.05, 0.05, 0.05, 0.80]
 Scenario 2: [0.05, 0.05, 0.10, 0.10, 0.70]
e Scenario 3: [0.05, 0.05, 0.20, 0.20, 0.50]
 Scenario 4: [0.10, 0.10, 0.20, 0.20, 0.40]
 Scenario 5: [0.20, 0.20, 0.20, 0.20, 0.20]

Scenario 1 represents the most severe imbalance, where the
majority class (normal) dominates the dataset, while Scenario
5 serves as the fully balanced baseline.

We adopt MobileNetV3-Large as the classification model
and encoder in our experiments [12]. MobileNetV3 is a
lightweight convolutional neural network architecture devel-
oped through neural architecture search (NAS), incorporating
squeeze-and-excitation (SE) modules and the hard-swish ac-
tivation function to achieve a balance between performance
and efficiency. The final classification layer is removed, and
the output feature vectors are passed to both a classification
head and a projection head used for contrastive learning.

For all experiments, we set the lower and upper bounds of
the adaptive parameters as follows: 7,,;, = 0.01, Ty = 0.1,
Amin = 0.1, and A\, = 1.0. These bounds are applied via clip-
ping in the definitions of Eq. (5) and Eq. (7), respectively. This
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Fig. 2. Performance of the baseline model across different class-imbalance
scenarios, evaluated using accuracy, G-Mean, and variance of Fl-score.
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Fig. 3. Accuracy and per-class Fl-scores of the baseline model across five
class-imbalance scenarios.

constraint ensures stable training behavior while maintaining
sensitivity to the degree of class imbalance.

B. Results and Discussions

To evaluate the effectiveness of the proposed framework,
we conduct a comparative analysis between the baseline
MobileNetV3 model and our enhanced model integrated with
the adaptive contrastive learning framework. The evaluation
is performed across all five class-imbalance scenarios using
multiple performance metrics, including overall accuracy, ge-
ometric mean (G-Mean), F1-scores. These metrics collectively
capture not only the general classification performance but
also the model’s robustness to class imbalance and its ability
to perform fairly across all classes. A higher G-Mean and a
lower variance of fl-score indicate less variation in detection
performance between classes.

We first evaluate the baseline model without applying the
proposed framework across all five class-imbalance scenarios.
The results in Fig. 2 shows the overall performance of the
baseline model across five different class-imbalance scenarios.
While the accuracy remains consistently high, this metric
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Fig. 4. Performance of the proposed framework across different class-

imbalance scenarios, evaluated using various metric.
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Fig. 5. Accuracy and per-class Fl-scores of the proposed framework across
five class-imbalance scenarios.

alone is insufficient to reflect the model’s performance under
imbalance. As the class distribution becomes more skewed
(e.g., Scenario 1 and 2), the G-Mean drops significantly,
indicating that the model fails to maintain balanced recall
across all classes. In parallel, the variance of the Fl-scores
increases, suggesting that the model performs inconsistently
across classes. These results reveal that the baseline model is
strongly biased toward the majority class, which dominates
the accuracy score but leads to poor recognition of minority
classes.

A more detailed view is provided in Fig. 3, which shows
the per-class Fl-scores along with the overall accuracy. In
scenarios with high imbalance, the Fl-scores of minority
classes are significantly lower than that of the majority class
(Class 4), which maintains high scores. This confirms that
the baseline model largely fails to learn effective decision
boundaries for underrepresented classes. Despite this, the over-
all accuracy appears unaffected due to the model’s tendency
to favor the majority class. This performance gap highlights
the limitations of using conventional training objectives under
imbalanced conditions and underscores the need for more
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adaptive methods.

To address the limitations observed in the baseline model,
we apply the proposed adaptive contrastive learning frame-
work to the same set of imbalance scenarios. This experiment
aims to evaluate whether the framework can improve the
recognition of minority classes and reduce performance dis-
parities across classes, while maintaining overall classification
accuracy.

Fig. 4 illustrates the performance of the proposed frame-
work across the five imbalance scenarios. While the accuracy
remains consistently high, as observed in the baseline, the G-
Mean increases noticeably, especially in scenarios with more
severe imbalance. This indicates that the model achieves more
balanced recall across all classes. Furthermore, the variance
of the Fl-scores is significantly reduced compared to the
baseline. This reduction suggests that the model performs
more consistently across classes and is less biased toward
the majority class. These improvements confirm that our
framework effectively mitigates the adverse effects of class
imbalance and enhances overall robustness.

A more detailed breakdown is provided in Fig. 5, which
shows the Fl-scores for each individual class under all sce-
narios. Compared to the baseline, the Fl-scores for minority
classes, which were previously low, show substantial improve-
ments. This trend is especially clear in highly imbalanced
scenarios such as Scenario 1 and 2, where the performance
gap between majority and minority classes is significantly
narrowed. Notably, the performance for the majority class
remains stable, indicating that the improvement for underrep-
resented classes does not come at the cost of degrading other
class performance. These results highlight the effectiveness of
our adaptive strategy in improving class-wise balance while
preserving overall accuracy.

In summary, the experimental results clearly demonstrate
the effectiveness of the proposed adaptive contrastive learning
framework in addressing class imbalance. By dynamically
adjusting loss weights and contrastive temperature based on
the class distribution, the model achieves more balanced per-
formance across all classes. The improvements in G-Mean and
the reduced variance of F1-scores confirm that the framework
mitigates the bias toward majority classes while preserving
overall accuracy. These findings validate the proposed method
as a simple yet effective extension to existing classification
models in imbalanced settings.

IV. CONCLUSION

This paper presents an adaptive contrastive learning
framework designed to mitigate performance bias in class-
imbalanced classification tasks. Unlike conventional methods
that rely on resampling or architectural modifications, our ap-
proach integrates seamlessly with existing models and datasets
by dynamically combining a class-weighted cross-entropy loss
with a temperature-scaled supervised contrastive loss. The
degree of imbalance in the data is quantified and used to
control key hyperparameters, including the temperature and
loss weighting, in an adaptive manner.

Through extensive experiments on the AIDER dataset under
various synthetic imbalance scenarios, we demonstrate that
the proposed framework improves minority class performance,
reduces class-wise variance, and maintains high overall ac-
curacy. These results highlight the practical applicability of
our method in real-world settings where class imbalance is
prevalent.
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