
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Study on Co-simulation of Heterogeneous
Simulators Using Functional Mock-up Interface

and Open-Source Toolchains

Jeongsik Kim
Ulsan Intelligent Convergence Research Section

AI Robot Research Division
Electronics and Telecommunications Research Institute

Republic of Korea
j.s.kim@etri.re.kr

Woo-Sung Jung
Ulsan Intelligent Convergence Research Section

AI Robot Research Division
Electronics and Telecommunications Research Institute

Republic of Korea
woosung@etri.re.kr

Homin Park
Ulsan Intelligent Convergence Research Section

AI Robot Research Division
Electronics and Telecommunications Research Institute

Republic of Korea
hominpark@etri.re.kr

Dae Seung Yoo
Ulsan Intelligent Convergence Research Section

AI Robot Research Division
Electronics and Telecommunications Research Institute

Republic of Korea
ooseyds@etri.re.kr

Abstract— Computer simulations have been widely utilized
within the paradigm of artificial intelligence. However, many
existing simulations have been developed in an ad hoc manner,
using heterogeneous techniques, tools, and algorithms, which
hinders their reusability and interoperability. To address these
challenges, this study explores a co-simulation approach
through an illustrative case that integrates simulators from
physical and network domains by employing a standardized
interface and open-source tools. This research is expected to not
only facilitate the interoperability of different simulators but
also contribute to future collaboration between AI systems and
simulation engineers.

Keywords—co-simulation, functional mock-up interface,
hybrid system, network simulator, open simulation platform

I. INTRODUCTION
Computer simulations have played a crucial role in the

advance of artificial intelligence, serving as controlled
environments and as sources of synthetic data for training and
evaluation tasks (Fig. 1) [1]. However, many existing
simulation models have been developed in an ad hoc manner
using heterogeneous techniques, tools, and algorithms, which
hinders their reusability and interoperability [2]. To address
these challenges, standardization-based approaches have been
proposed to enhance the interoperability from human
engineers and computer programs with practical resource for
potential extension with AI [3, 4].

In this context, this paper explores a co-simulation
approach through an illustrative case that integrates
simulators from physical and network domains by employing
Functional Mock-up Interface (FMI) [5] and up-to-date open-
source tools (i.e., ns-3 [6], OSP Engine [7], PythonFMU [8]).
The FMI-based illustration with this open-source toolchain is
expected to facilitate the practical feasibility of co-simulation
approaches as well as onboarding for co-simulation beginners.

II. RESEARCH BACKGROUND
Co-simulation is a technique for complex systems by

coordinating multiple simulators into a single simulation.
Among various co-simulation standards, FMI has gained
broad acceptance, with over 200 supporting tools [5]. FMI
standardizes both the structure of individual simulation units
and their interfaces for data exchange and orchestration.

FMI-based co-simulation typically consists of three key
components (as shown in Fig. 2):

 Functional Mock-up Unit (FMU): an FMU is a
container-type simulation unit designed to run
independently under FMI. Users can generate FMUs
using their familiar tools such as Matlab, Python, and
OpenModelica. Each FMU encapsulates defined
inputs and outputs, internal states, state transition
rules, and—if applicable—a local solver for
continuous-time integration. While FMI mandates a
standardized interface for interoperability, FMUs can
be exported either as black-box units (with hidden
internals) or as source-accessible modules, depending
on the configuration of the modeling tool.

 Co-simulation scenario: a co-simulation scenario
defines both the interconnections among FMUs and
any external events that influence state transitions
during simulation. Depending on the simulation
architecture, these scenarios can either be embedded
directly within the co-simulation master or provided
as external configuration files. The major contributor
to FMI ecosystem (i.e., Modelica association)
supports the System Structure and Parameterization

Fig. 1. The role of simulation models in the era of AI [1]

843979-8-3315-5678-5/25/$31.00 ©2025 IEEE ICTC 2025

(SSP) standard, which formalizes the structure,
parameterization, and composition of co-simulation
systems. Practically, scenario templates are often used
to define event schedules in a standardized and
machine-readable format (e.g., JSON).

 Co-simulation master: the co-simulation master
orchestrates the overall execution of simulations
involving multiple FMUs based on a given scenario.
While the FMI standard does not specify how the
master should be implemented, it requires that each
FMU exposes C-API for interactions. In practice, the
master handles responsibilities beyond interface-level
coordination, including time advancement control,
synchronization across simulation units, error
compensation, data exchange, and result reporting.

Despite the growing maturity of standard-based co-
simulation methodologies, integrating simulators with
heterogeneous semantics—such as discrete-event models and
continuous-time systems—remains a non-trivial challenge.
The fundamental difference in time semantics are as
illustrated in Fig. 3 [9]. A few technically feasible solutions
have been proposed to advance consistent synchronization,
event propagation, and data flow across models. The
following summarizes key research efforts to address different
co-simulation challenges.

 Non-iterative Algorithms based on Variable Time
Steps: F3ORNITS applies a variable step size tailored
to the subsystem and effectively handles events and
zero-crossings with a non-iterative scheduling
approach [10]. An adaptive algorithm using Maestro2
dynamically reorders the algorithms during co-
simulation to maintain precision [11]. This approach
demonstrates improved computational efficiency and
accuracy compared to fixed step sizes.

 Hybrid Time-Event-Driven Approaches: [12]
proposes a hybrid time-stepped and event-driven
approach that efficiently manages time coordination
and information exchange between multiple
simulation modules. [13] introduces a superdense time
model to address precision issues in environments with
mixed floating-point and integer-based time
representations and presents a method for integrating
multiple time representations. The mosaik 3.0 co-
simulation framework also proposes a hybrid approach,
integrating models with continuous dynamics and
discrete events in a unified simulation environment
[13].

 Extending the Master Algorithm through Event
Prediction: a structure is proposed in which the master
algorithm queries the FMU for the timing of future
events, ensuring co-deterministic execution [14]. The
FMI 3.0 feature allows an FMU to voluntarily stop its
execution within a communication step and return
control to the master, signaling that an internal event
(e.g., a non-continuous change in outputs) has
occurred. This enables the master algorithm to respond
immediately to critical events, preventing inaccuracies
that might arise from waiting until the end of a fixed
interval [15].

 Clock-Based Synchronization Based on FMI 3.0:
Synchronous Clocked Simulation, introduced in FMI
3.0, clearly communicates the cause and timing of
simultaneous events and enables precise event
synchronization [16]. Additionally, FMI 3.0 includes a
fine-grained control (Scheduled Execution) feature for
real-time simulation, allowing fine-grained tuning of
the execution time of FMU submodules [17].

These approaches on co-simulating systems are often
tailored to specific cases. For instance, Fig. 4 illustrates the
option for co-simulating a hybrid system in a commercial tool
[9]. It may pose additional barriers to entry for co-simulation
practitioners. Similarly, the adoption of FMI 3.0 introduces
native support for hybrid simulation and event handling, while
its practical uptake remains limited due to tooling and
compatibility issues. You can check the available open-source
and commercial tools for each version in [5].

Fig. 4. Illustrated time advances of co-simulating a hybrid
system with (a) fixed-step solver and (b) various-step
solver [9]

Fig. 2. Illustrative diagram of the ecosystem

for FMI-based co-simulation

Fig. 3. Illustrated time advances of co-simulating (a)
continuous-time system and (b) discrete-event system [9]

(a)

 (b)

(a)

(b)

844

In response to the growing demand for practically reusable
approaches [18], recent efforts have presented accessible
resources over FMI ecosystem. Open Simulation Platform
(OSP) [7] provides an easy-to-use program as a co-simulation
master, which is not specified by FMI standard, with reference
samples, while DNV [4] presents various sources including
the extension for batch experiments and machine learning. [19]
developed an ns‑3-to-FMI export module that wraps ns‑3
scripts as FMUs for integration into FMI-based workflows.
These FMUs synchronize ns‑3’s internal event queue and
simulation steps with the master algorithm via standard FMI
function calls, enabling flexible composition in multi-domain
simulation scenarios. However, the implementation is
working on earlier versions of ns‑3 and limited to the
reconfiguration according to multiple scenarios. [20]
proposed an enhanced adapter design that allows the dynamic
reconfiguration of ns-3 as a network FMU, supporting runtime
interface binding, bidirectional data exchange, and integration
into OSP Engine. Based on these works, this study builds an
adapter-based illustration integrating two different types of
simulators for motional and network dynamics which modern
complex systems typically exhibit.

III. METHODS

A. Co-simulation tools
To explore a co-simulation illustration that integrates a

continuous-time physical system and a discrete-event network
system, this study employs up-to-date open-source tools that
constitute the three major components of an FMI-based co-
simulation approach, as described below. These tools have
provided from installation instructions to utilization examples.

 ns-3: ns-3 [6] is a discrete-event network simulator
widely used for research and education in Internet
systems. It provides detailed packet-level modeling
and supports script-based configuration through C++
or Python. In this work, ns-3 is selected as the
representative discrete-event simulator for modeling
network-layer behaviors.

 OSP Engine: OSP [7] provides a modular FMI-
compliant master implementation known as libcosim.
This master coordinates time and data
synchronization among distributed FMUs using
fixed-step semantics. Additionally, OSP offers an
extension called OSP-IS for interface specification
and semantic validation. In this study, a demo app of
OSP Engine is adopted to serve as the co-simulation
master.

 PythonFMU: PythonFMU [8] is an open-source tool
that allows developers to easily create and export
FMUs using Python. It supports FMI 2.0 and
facilitates rapid prototyping of adapter modules or
simple simulation components. This tool is used to
build the adapter FMU that bridges between ns-3 and
the FMI co-simulation framework.

B. Model configuration
A hypothetical scenario is illustrated in which a ship

communicates with a port to obtain entrance admission.
Depending on the simulation scope, the two entities—ship and
port—can be interconnected either directly via FMI or
indirectly through a network adapter FMU linked to a discrete-
event network simulator. If network-level effects are not of
interest, the interaction requires only two FMUs. However, to

incorporate more realistic communication dynamics—such as
transmission delay, queuing, or packet loss—an adapter FMU
can be employed alongside a dedicated network simulator
such as ns-3.

The ship and port FMUs are illustrated in Fig. 5 using the
concept of Discrete Event System Specification (DEVS) [21].
For the sake of simplicity, we assume that a port allows only
one vessel to transit at a time. Once the simulation begins, the
ship FMU periodically transmits an AISid message at each
simulation step and remains in the STOP state until it receives
an entrance approval. Upon receiving a "MOVE" message, the
ship transitions to the MOVE state and continues moving at a
constant speed of 1 m/s along a one-dimensional coordinate.
During this movement, the ship's local coordinate value is
updated at each time step, and the updated position is reflected
in subsequent AISid messages. After receiving a “STOP”
message, the ship returns to the STOP state. In parallel, the
port FMU begins in the IDLE state and waits for incoming
“AISid” messages. Upon receiving one or more, it stops by a
transient state (i.e., USHER) to select a ship in the STOP state
and transitions to the BUSY state, sending a “MOVE”
message to grant access. After a random duration sampled
from a uniform distribution over the interval (0, 5], the port
returns to the IDLE state by emitting a "STOP" message to
handle the next request. This behavior ensures that entrance
permission is granted one ship at a time, even when multiple
ships are concurrently requesting access.

If network-level dynamics are to be considered, the
message exchange between FMUs can be optionally routed
through a network adapter FMU, which interfaces with the ns-
3 simulator using pre-configured connection parameters and
behavior scripts. Based on [20], the adapter handles data
exchange via the “REQUEST” and “RESPONSE” calls while
maintaining synchronization with the co-simulation master, as
shown in Fig. 6. This architecture enables more faithful
modeling of maritime communication protocols while
preserving modularity of individual simulators and
minimizing system complexity. Additionally, it can provide
scalability of the simulator structure by simultaneously
utilizing network simulators with different environment
settings as needed.

 (a) ship

 (b) port

Fig. 5. The state transition diagrams of simulation entities

845

C. Illustration
The simulation environment was configured using

Oracle™ VirtualBox 7.0.24 on a Windows 10 x64
workstation equipped with an Intel Core i9 3.20 GHz
processor and 64 GB of RAM. The ns-3 simulator (version
3.44) was deployed on Ubuntu 22.04.6 LTS. Two main
configuration files were used in the experiment: (1) a system
structure description file specifying the connections between
FMUs and setting the co-simulation communication step size
to 0.001 seconds, and (2) an ns-3 configuration file defining
the initialization parameters of the network model, including
simulation time step, node positions, and IP configurations.

Fig. 7 presents the output trajectories from the co-
simulation tools. The csv format captured by the OSP Engine
demonstrates the state transitions of the ship and port FMUs
as well as message exchanges between them based on the
simulation timelines. The network packet trace generated by
ns‑3 displays time-stamped messages routed through the
adapter FMU.

D. Observation
In this scenario, the overall network traffic remains

minimal and the two simulation entities exchange messages
with low latency. However, the adapter FMU introduces a
deliberate delay governed by the configured co-simulation
step size. As a result, using the adapter can lead to noticeable
communication delays between FMUs compared to the direct
(no-adapter) connection mode. For example, in the no-adapter
case, a message transmitted prior to the first communication
step is delivered to the target FMU in the first communication
step. In contrast, when the adapter is adopted, the message is
registered by ns-3 scheduler after the first communication step
and is delivered in the subsequent one, regardless of the actual
delivery time within ns-3. This observation implies that the
choice of communication mode should consider both
computational overhead and acceptable communication
latency.

A benchmark of 100,000 simulation steps was conducted
and repeated 20 times to assess computational performance.
The average execution time in the no-adapter configuration
was approximately 10 seconds, whereas the adapter-enabled
configuration required around 60 seconds. This result suggests
that the increased runtime observed in the adapter-enabled
configuration may stem from the added communication layer
as well as potential inter-process latency between simulators.

IV. DISCUSSION
This study explored a FMI-based co-simulation approach

utilizing open-source toolchains to verify its technical
capability and potential applications. Although the latest
version of FMI was not adopted, the presented illustration
demonstrates that up-to-date open-source tools can effectively
support co-simulation between ns-3 and FMI-based
simulators by enabling the integration of heterogeneous
dynamics as well as the optional consideration of network
behaviors. Furthermore, it was confirmed that each simulator
can operate modularly on a separate virtual machine,
providing interoperability for independent tool configurations
(e.g., version upgrades and algorithmic modifications)
without compromising the overall co-simulation workflow.
The interoperability from open-source tools and protocols
could contribute to the accessibility from human and AI
engineers as well as their future collaboration.

Several limitations constrain the generalizability of the
illustrated co-simulation approach. First, the illustration does
not incorporate real-time operation scenarios (e.g., hardware-
in-the-loop experiments or live data injection), where the
temporal synchronization is crucial. Second, its scalability
remains untested under high-load conditions involving
numerous FMUs or dense interconnections. Third, the current
verification covers only a limited range of continuous-time
models, leaving its applicability to broader physical domains
uncertain. Moreover, the extensibility of the framework
should be further examined to support emerging applications
such as AI-assisted control and its testbed with generative
scenario synthesis [22].

Future research could expand this work in several
directions. For real-time applications, incorporating extended
FMI-compatible interfaces for X-in-the-loop simulation
(XiLS) could enable integration with embedded platforms and
physical hardware. Coupling with domain-specific
simulators—such as robotic or drone dynamics engines—
would facilitate validation across diverse continuous-time
systems. In terms of scalability, deploying distributed co-
simulation over cloud-based infrastructure could enable batch
simulations and performance benchmarking for large-scale
models. Additionally, the interoperability from open-source
tools and protocols is expected to accelerate integrating AI
agents into the co-simulation workflow to pave the way
toward self-evolving simulation environments.

Fig. 7. The outputs of simulation

Fig. 6. The sequence diagram of ns-3 and its adapter [20]

846

ACKNOWLEDGMENT
This research was supported by Korea Institute of

Maritime Science & Technology Promotion(KIMST) funded
by the Ministry of Oceans and Fisheries, Korea(20220534,
The Development of Simulation-based Evaluation
Technology).

REFERENCES

[1] S. M. M. Sajadieh, and S. D. Noh, “From simulation to autonomy:
reviews of the integration of artificial intelligence and digital twins,”
Int. J. Pr. Eng. Man-GT, pp. 1-32, 2025.

[2] M. Hussain, N. Masoudi, G. Mocko, and C. Paredis, “Approaches for
simulation model reuse in systems design—A review,” SAE Int. J. Adv.
Curr. Pract. Mobil., vol. 4(2022-01-0355), pp. 1457-1471, 2022.

[3] V. Grimm et al., “The ODD protocol for describing agent-based and
other simulation models: A second update to improve clarity,
replication, and structural realism,” J. Artif. Soc. Soc. Simul., vol.
23(2), 2020.

[4] DNV Open Source, “mlfmu: Export ML models represented as ONNX
files to Functional-Mockup-Units (FMU),” 2025, github repository.
[Online]. Available: https://github.com/dnv-opensource/mlfmu

[5] Modelica Association, “Functional mock-up interface specification,”
2025. [Online]. Available: https://fmi-standard.org/

[6] NSnam, “Ns-3: network simulator,” 2025. [Online]. Available:
https://www.nsnam.org/

[7] Open Simulation Platform, “Open simulation platform: towards a
maritime ecosystem for efficient co-simulation,” 2022. [Online].
Available: https://opensimulationplatform.com/

[8] L. I. Hatledal, F. Collonval, and H. Zhang, “Enabling python driven co-
simulation models with pythonfmu,” Proc. 34th Int. ECMS Conf.
Model. Simul, 2020. [Online]. Available: https://github.com/NTNU-
IHB/PythonFMU

[9] Matlab, “Variable step solvers in Simulink,” 2025. [Online]. Available:
https://www.mathworks.com/help/simulink/ug/variable-step-solvers-
in-simulink-1.html

[10] Y. Eguillon, B. Lacabanne, and D. Tromeur-Dervout, “F3ORNITS: a
flexible variable step size non-iterative co-simulation method handling
subsystems with hybrid advanced capabilities,” Eng. comput., vol. 38.5,
pp. 4501-4543, 2022..

[11] S. T. Hansen et al., “Co-simulation at different levels of expertise with
Maestro2,” J Syst. Softw, vol. 209, p.111905, 2024.

[12] J. Tang et al., “Research on a hybrid time-event-driven co-simulation
framework based on the FMI standard,” Int. J. Mechatron. Appl. Mech.
vol. 18, pp. 222-231, 2024.

[13] A. Ofenloch et al., “Mosaik 3.0: combining time-stepped and discrete
event simulation,” IEEE OSMSES, pp. 1-5, May 2022, DOI:
10.1109/OSMSES54027.2022.9769116

[14] D. Brodman et al., “Determinate composition of FMUs for co-
simulation,” Proc. IEEE EMSOFT, p. 1-12, 2013, DOI:
10.1109/EMSOFT.2013.6658580

[15] A. Junghanns et al., “The functional mock-up interface 3.0-new
features enabling new applications,” Proc. Modelica conf., pp. 17-26,
2021, DOI: 10.3384/ecp2118117

[16] S. T Hansen et al., “The FMI 3.0 standard interface for clocked and
scheduled simulations,” Electronics, 11(21), p. 3635, 2022, DOI:
10.3390/electronics11213635

[17] C. Coïc et al., “Modelica, FMI and SSP for LOTAR of Analytical
mBSE models: first implementation and feedback,” Proc. Modelica
conf. pp. 49-56, Sep. 2021, DOI: 10.3384/ecp2118149

[18] J. Kim, W.-S. Jung, and N. Kim, “Study on modeling formalism and
co-simulation for the system-level test of maritime components,” 2023
14th International Conference on Information and Communication
Technology Convergence (ICTC), IEEE, pp. 1504-1506, 2023, DOI:
10.1109/ICTC58733.2023.10392735

[19] ERIGrid, “ns-3-fmi-export: Module fmi-export enables the FMI-
compliant simulation coupling with ns-3 scripts,” 2021, github
repository. [Online] Available: https://github.com/ERIGrid/ns3-fmi-
export

[20] W.-S. Jung, J. Kim, and D. S. Yoo, “An FMI compliant co-simulation
approach for ns-3 network simulator,” 2024 15th International
Conference on Information and Communication Technology
Convergence (ICTC), IEEE, pp. 1954–1955, 2024, DOI:
10.1109/ICTC62082.2024.10827338

[21] B. P. Zeigler, A. Muzy, and E. Kofman. Theory of modeling and
simulation: discrete event & iterative system computational
foundations. Academic press, 2018.

[22] S. Hong, G. Park, J. S. Kim, “Automated deep‐learning model
optimization framework for microcontrollers,” ETRI Journal, vol.
47(2), p. 179-19, 2025.

847

