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Abstract— Computer simulations have been widely utilized 
within the paradigm of artificial intelligence. However, many 
existing simulations have been developed in an ad hoc manner, 
using heterogeneous techniques, tools, and algorithms, which 
hinders their reusability and interoperability. To address these 
challenges, this study explores a co-simulation approach 
through an illustrative case that integrates simulators from 
physical and network domains by employing a standardized 
interface and open-source tools. This research is expected to not 
only facilitate the interoperability of different simulators but 
also contribute to future collaboration between AI systems and 
simulation engineers.  
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I. INTRODUCTION 
Computer simulations have played a crucial role in the 

advance of artificial intelligence, serving as controlled 
environments and as sources of synthetic data for training and 
evaluation tasks (Fig. 1) [1]. However, many existing 
simulation models have been developed in an ad hoc manner 
using heterogeneous techniques, tools, and algorithms, which 
hinders their reusability and interoperability [2]. To address 
these challenges, standardization-based approaches have been 
proposed to enhance the interoperability from human 
engineers and computer programs with practical resource for 
potential extension with AI [3, 4].  

In this context, this paper explores a co-simulation 
approach  through an illustrative case that integrates 
simulators from physical and network domains by employing 
Functional Mock-up Interface (FMI) [5] and up-to-date open-
source tools (i.e., ns-3 [6], OSP Engine [7], PythonFMU [8]). 
The FMI-based illustration with this open-source toolchain is 
expected to facilitate the practical feasibility of co-simulation 
approaches as well as onboarding for co-simulation beginners. 

II. RESEARCH BACKGROUND 
Co-simulation is a technique for complex systems by 

coordinating multiple simulators into a single simulation. 
Among various co-simulation standards, FMI has gained 
broad acceptance, with over 200 supporting tools [5]. FMI 
standardizes both the structure of individual simulation units 
and their interfaces for data exchange and orchestration. 

FMI-based co-simulation typically consists of three key 
components (as shown in Fig. 2): 

 Functional Mock-up Unit (FMU): an FMU is a 
container-type simulation unit designed to run 
independently under FMI. Users can generate FMUs 
using their familiar tools such as Matlab, Python, and 
OpenModelica. Each FMU encapsulates defined 
inputs and outputs, internal states, state transition 
rules, and—if applicable—a local solver for 
continuous-time integration. While FMI mandates a 
standardized interface for interoperability, FMUs can 
be exported either as black-box units (with hidden 
internals) or as source-accessible modules, depending 
on the configuration of the modeling tool.  

 Co-simulation scenario: a co-simulation scenario 
defines both the interconnections among FMUs and 
any external events that influence state transitions 
during simulation. Depending on the simulation 
architecture, these scenarios can either be embedded 
directly within the co-simulation master or provided 
as external configuration files. The major contributor 
to FMI ecosystem (i.e., Modelica association) 
supports the System Structure and Parameterization 

 
 

Fig. 1. The role of simulation models in the era of AI [1] 
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(SSP) standard, which formalizes the structure, 
parameterization, and composition of co-simulation 
systems. Practically, scenario templates are often used 
to define event schedules in a standardized and 
machine-readable format (e.g., JSON). 

 Co-simulation master: the co-simulation master 
orchestrates the overall execution of simulations 
involving multiple FMUs based on a given scenario. 
While the FMI standard does not specify how the 
master should be implemented, it requires that each 
FMU exposes C-API for interactions. In practice, the 
master handles responsibilities beyond interface-level 
coordination, including time advancement control, 
synchronization across simulation units, error 
compensation, data exchange, and result reporting. 

Despite the growing maturity of standard-based co-
simulation methodologies, integrating simulators with 
heterogeneous semantics—such as discrete-event models and 
continuous-time systems—remains a non-trivial challenge. 
The fundamental difference in time semantics are as 
illustrated in Fig. 3 [9]. A few technically feasible solutions 
have been proposed to advance consistent synchronization, 
event propagation, and data flow across models. The 
following summarizes key research efforts to address different 
co-simulation challenges.  

 Non-iterative Algorithms based on Variable Time 
Steps: F3ORNITS applies a variable step size tailored 
to the subsystem and effectively handles events and 
zero-crossings with a non-iterative scheduling 
approach [10]. An adaptive algorithm using Maestro2 
dynamically reorders the algorithms during co-
simulation to maintain precision [11]. This approach 
demonstrates improved computational efficiency and 
accuracy compared to fixed step sizes. 

 Hybrid Time-Event-Driven Approaches: [12] 
proposes a hybrid time-stepped and event-driven 
approach that efficiently manages time coordination 
and information exchange between multiple 
simulation modules. [13] introduces a superdense time 
model to address precision issues in environments with 
mixed floating-point and integer-based time 
representations and presents a method for integrating 
multiple time representations. The mosaik 3.0 co-
simulation framework also proposes a hybrid approach, 
integrating models with continuous dynamics and 
discrete events in a unified simulation environment 
[13]. 

 Extending the Master Algorithm through Event 
Prediction: a structure is proposed in which the master 
algorithm queries the FMU for the timing of future 
events, ensuring co-deterministic execution [14]. The 
FMI 3.0 feature allows an FMU to voluntarily stop its 
execution within a communication step and return 
control to the master, signaling that an internal event 
(e.g., a non-continuous change in outputs) has 
occurred. This enables the master algorithm to respond 
immediately to critical events, preventing inaccuracies 
that might arise from waiting until the end of a fixed 
interval [15]. 

 Clock-Based Synchronization Based on FMI 3.0: 
Synchronous Clocked Simulation, introduced in FMI 
3.0, clearly communicates the cause and timing of 
simultaneous events and enables precise event 
synchronization [16]. Additionally, FMI 3.0 includes a 
fine-grained control (Scheduled Execution) feature for 
real-time simulation, allowing fine-grained tuning of 
the execution time of FMU submodules [17]. 

These approaches on co-simulating systems are often 
tailored to specific cases. For instance, Fig. 4 illustrates the 
option for co-simulating a hybrid system in a commercial tool 
[9]. It may pose additional barriers to entry for co-simulation 
practitioners. Similarly, the adoption of FMI 3.0 introduces 
native support for hybrid simulation and event handling, while 
its practical uptake remains limited due to tooling and 
compatibility issues. You can check the available open-source 
and commercial tools for each version in [5].  

 
Fig. 4. Illustrated time advances of co-simulating a hybrid 
system with (a) fixed-step solver and (b) various-step 
solver [9] 

 
Fig. 2. Illustrative diagram of the ecosystem  

for FMI-based co-simulation 

 
Fig. 3. Illustrated time advances of co-simulating (a) 
continuous-time system and (b) discrete-event system [9] 
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In response to the growing demand for practically reusable 
approaches [18], recent efforts have presented accessible 
resources over FMI ecosystem. Open Simulation Platform 
(OSP) [7] provides an easy-to-use program as a co-simulation 
master, which is not specified by FMI standard, with reference 
samples, while DNV [4] presents various sources including 
the extension for batch experiments and machine learning. [19] 
developed an ns‑3-to-FMI export module that wraps ns‑3 
scripts as FMUs for integration into FMI-based workflows. 
These FMUs synchronize ns‑3’s internal event queue and 
simulation steps with the master algorithm via standard FMI 
function calls, enabling flexible composition in multi-domain 
simulation scenarios. However, the implementation is 
working on earlier versions of ns‑3 and limited to the 
reconfiguration according to multiple scenarios. [20] 
proposed an enhanced adapter design that allows the dynamic 
reconfiguration of ns-3 as a network FMU, supporting runtime 
interface binding, bidirectional data exchange, and integration 
into OSP Engine. Based on these works, this study builds an 
adapter-based illustration integrating two different types of 
simulators for motional and network dynamics which  modern 
complex systems typically exhibit.  

III. METHODS 

A. Co-simulation tools 
To explore a co-simulation illustration that integrates a 

continuous-time physical system and a discrete-event network 
system, this study employs up-to-date open-source tools that 
constitute the three major components of an FMI-based co-
simulation approach, as described below. These tools have 
provided from installation instructions to utilization examples.  

 ns-3: ns-3 [6] is a discrete-event network simulator 
widely used for research and education in Internet 
systems. It provides detailed packet-level modeling 
and supports script-based configuration through C++ 
or Python. In this work, ns-3 is selected as the 
representative discrete-event simulator for modeling 
network-layer behaviors. 

 OSP Engine: OSP [7] provides a modular FMI-
compliant master implementation known as libcosim. 
This master coordinates time and data 
synchronization among distributed FMUs using 
fixed-step semantics. Additionally, OSP offers an 
extension called OSP-IS for interface specification 
and semantic validation. In this study, a demo app of 
OSP Engine is adopted to serve as the co-simulation 
master. 

 PythonFMU: PythonFMU [8] is an open-source tool 
that allows developers to easily create and export 
FMUs using Python. It supports FMI 2.0 and 
facilitates rapid prototyping of adapter modules or 
simple simulation components. This tool is used to 
build the adapter FMU that bridges between ns-3 and 
the FMI co-simulation framework.  

B. Model configuration 
A hypothetical scenario is illustrated in which a ship 

communicates with a port to obtain entrance admission. 
Depending on the simulation scope, the two entities—ship and 
port—can be interconnected either directly via FMI or 
indirectly through a network adapter FMU linked to a discrete-
event network simulator. If network-level effects are not of 
interest, the interaction requires only two FMUs. However, to 

incorporate more realistic communication dynamics—such as 
transmission delay, queuing, or packet loss—an adapter FMU 
can be employed alongside a dedicated network simulator 
such as ns-3. 

The ship and port FMUs are illustrated in Fig. 5 using the 
concept of Discrete Event System Specification (DEVS) [21]. 
For the sake of simplicity, we assume that a port allows only 
one vessel to transit at a time. Once the simulation begins, the 
ship FMU periodically transmits an AISid message at each 
simulation step and remains in the STOP state until it receives 
an entrance approval. Upon receiving a "MOVE" message, the 
ship transitions to the MOVE state and continues moving at a 
constant speed of 1 m/s along a one-dimensional coordinate. 
During this movement, the ship's local coordinate value is 
updated at each time step, and the updated position is reflected 
in subsequent AISid messages. After receiving a “STOP” 
message, the ship returns to the STOP state. In parallel, the 
port FMU begins in the IDLE state and waits for incoming 
“AISid” messages. Upon receiving one or more, it stops by a 
transient state (i.e., USHER) to select a ship in the STOP state 
and transitions to the BUSY state, sending a “MOVE” 
message to grant access. After a random duration sampled 
from a uniform distribution over the interval (0, 5], the port 
returns to the IDLE state by emitting a "STOP" message to 
handle the next request. This behavior ensures that entrance 
permission is granted one ship at a time, even when multiple 
ships are concurrently requesting access. 

If network-level dynamics are to be considered, the 
message exchange between FMUs can be optionally routed 
through a network adapter FMU, which interfaces with the ns-
3 simulator using pre-configured connection parameters and 
behavior scripts. Based on [20], the adapter handles data 
exchange via the “REQUEST” and “RESPONSE” calls while 
maintaining synchronization with the co-simulation master, as 
shown in Fig. 6. This architecture enables more faithful 
modeling of maritime communication protocols while 
preserving modularity of individual simulators and 
minimizing system complexity. Additionally, it can provide 
scalability of the simulator structure by simultaneously 
utilizing network simulators with different environment 
settings as needed. 

 
                       (a) ship 

  
                        (b) port 

Fig. 5. The state transition diagrams of simulation entities 
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C. Illustration 
The simulation environment was configured using 

Oracle™ VirtualBox 7.0.24 on a Windows 10 x64 
workstation equipped with an Intel Core i9 3.20 GHz 
processor and 64 GB of RAM. The ns-3 simulator (version 
3.44) was deployed on Ubuntu 22.04.6 LTS. Two main 
configuration files were used in the experiment: (1) a system 
structure description file specifying the connections between 
FMUs and setting the co-simulation communication step size 
to 0.001 seconds, and (2) an ns-3 configuration file defining 
the initialization parameters of the network model, including 
simulation time step, node positions, and IP configurations.  

Fig. 7 presents the output trajectories from the co-
simulation tools. The csv format captured by the OSP Engine 
demonstrates the state transitions of the ship and port FMUs 
as well as message exchanges between them based on the 
simulation timelines. The network packet trace generated by 
ns‑3 displays time-stamped messages routed through the 
adapter FMU. 

D. Observation 
In this scenario, the overall network traffic remains 

minimal and the two simulation entities exchange messages 
with low latency. However, the adapter FMU introduces a 
deliberate delay governed by the configured co-simulation 
step size. As a result, using the adapter can lead to noticeable 
communication delays between FMUs compared to the direct 
(no-adapter) connection mode. For example, in the no-adapter 
case, a message transmitted prior to the first communication 
step is delivered to the target FMU in the first communication 
step. In contrast, when the adapter is adopted, the message is 
registered by ns-3 scheduler after the first communication step 
and is delivered in the subsequent one, regardless of the actual 
delivery time within ns-3. This observation implies that the 
choice of communication mode should consider both 
computational overhead and acceptable communication 
latency.  

A benchmark of 100,000 simulation steps was conducted 
and repeated 20 times to assess computational performance. 
The average execution time in the no-adapter configuration 
was approximately 10 seconds, whereas the adapter-enabled 
configuration required around 60 seconds. This result suggests 
that the increased runtime observed in the adapter-enabled 
configuration may stem from the added communication layer 
as well as potential inter-process latency between simulators. 

IV. DISCUSSION 
This study explored a FMI-based co-simulation approach 

utilizing open-source toolchains to verify its technical 
capability and potential applications. Although the latest 
version of FMI was not adopted, the presented illustration 
demonstrates that up-to-date open-source tools can effectively 
support co-simulation between ns-3 and FMI-based 
simulators by enabling the integration of heterogeneous 
dynamics as well as the optional consideration of network 
behaviors. Furthermore, it was confirmed that each simulator 
can operate modularly on a separate virtual machine, 
providing interoperability for independent tool configurations 
(e.g., version upgrades and algorithmic modifications) 
without compromising the overall co-simulation workflow. 
The interoperability from open-source tools and protocols 
could contribute to the accessibility from human and AI 
engineers as well as their future collaboration.  

Several limitations constrain the generalizability of the 
illustrated co-simulation approach. First, the illustration does 
not incorporate real-time operation scenarios (e.g., hardware-
in-the-loop experiments or live data injection), where the 
temporal synchronization is crucial. Second, its scalability 
remains untested under high-load conditions involving 
numerous FMUs or dense interconnections. Third, the current 
verification covers only a limited range of continuous-time 
models, leaving its applicability to broader physical domains 
uncertain. Moreover, the extensibility of the framework 
should be further examined to support emerging applications 
such as AI-assisted control and its testbed with generative 
scenario synthesis [22]. 

Future research could expand this work in several 
directions. For real-time applications, incorporating extended 
FMI-compatible interfaces for X-in-the-loop simulation 
(XiLS) could enable integration with embedded platforms and 
physical hardware. Coupling with domain-specific 
simulators—such as robotic or drone dynamics engines—
would facilitate validation across diverse continuous-time 
systems. In terms of scalability, deploying distributed co-
simulation over cloud-based infrastructure could enable batch 
simulations and performance benchmarking for large-scale 
models. Additionally, the interoperability from open-source 
tools and protocols is expected to accelerate integrating AI 
agents into the co-simulation workflow to pave the way 
toward self-evolving simulation environments. 

 

Fig. 7. The outputs of simulation 

 
Fig. 6. The sequence diagram of ns-3 and its adapter [20] 
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