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Abstract— Recent advances in artificial intelligence have
enabled predictive modeling and control in manufacturing
processes. However, industrial datasets often suffer from
missing entries and limited availability due to sensor limitations,
failures, and high installation costs. Physics-Informed Neural
Networks (PINNSs) incorporate physical laws into the learning
process, offering physically consistent predictions, but their
performance deteriorates in complex processes when relying on
a single global partial differential equation (PDE) or ordinary
differential equation (ODE). To address this limitation, we
propose a Zone-based PINN (Z-PINN) framework that divides
the process timeline into multiple zones based on a predefined
ceramic sintering schedule and trains a separate PINN for each
zone. Without modifying the original PINN structure, this
approach allows localized learning and improves prediction
accuracy while ensuring physical consistency. We evaluate Z-
PINN on real ceramic sintering data under three scenarios:
short-term missing values, long-term missing values, and full
sequence generation from minimal initial inputs. Experimental
results show that Z-PINN significantly outperforms the
conventional PINN in all cases, achieving lower Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE), and
producing physically consistent outputs even in data-scarce
settings.

Keywords—PINN, Physics-Informed Learning, Industrial Al,
Manufacturing, Ceramic sintering process

L.

Artificial intelligence (Al)-based technologies have been
actively adopted in the manufacturing industry for process
automation, quality prediction, and anomaly detection [1,2].
The aging workforce and retirement of experienced operators
have led to increasing reliance on unskilled personnel,
exposing the limitations of human-centered control and
decision-making in processes requiring high precision [3].
The concept of the smart factory has emerged to address this
challenge, demanding high-precision control systems capable
of replacing the tacit knowledge of skilled workers [4].

INTRODUCTION

The core of smart factories lies in models that predict and
control quality and process conditions using data collected
from equipment and sensors, which play a vital role in
maintaining consistent quality [5]. Industrial environments
often face limitations in data acquisition due to inaccessible
equipment, costly inspection tools, and high sensor
installation expenses [6]. Also, missing data—both long-term
and short-term—frequently occur as a result of equipment
failures or sensor malfunctions [7]. Such data losses reduce
the reliability of model training and may significantly
compromise process stability and product quality if the system
state at missing timestamps cannot be reconstructed [8,9].

The quantity of data available per process unit is generally
limited in manufacturing settings. Industrial Al applications
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frequently suffer from data scarcity, especially when
compared to approaches trained on large-scale public datasets
[10,11]. Interpolating missing values, estimating unobserved
data points, and generating reliable training datasets from
limited observations becomes essential [12,13].

To address these challenges, this study proposes a data-
driven learning approach guided by physical laws. A Physics-
Informed Neural Network (PINN) framework [14] is adopted,
embedding physical equations into the loss function to ensure
physical consistency during training. PINNs have
demonstrated effectiveness in both predictive accuracy and
interpretability across various physical domains, including
heat transfer, fluid dynamics, and structural mechanics
[15,16,17].

Conventional PINNs utilize global partial differential
equation (PDE) or ordinary differential equation (ODE)-based
loss formulations, which often lead to degraded performance
in complex systems characterized by abrupt process condition
changes or highly nonlinear dynamics [18,19]. This paper
introduces a Zone-based PINN (Z-PINN) framework to
overcome this limitation. The process is divided into time-
based zones according to the sintering schedule, and each zone
is independently modeled using a separate PINN. The
effectiveness of the proposed method is experimentally
validated using real power and temperature data collected
from a ceramic sintering process, with results compared
against conventional PINN models.

II. BACKGROUND AND MOTIVATION

The ceramic sintering process plays a crucial role in
determining final product quality, including key properties
such as density, mechanical strength, and color [21]. Electric
furnaces utilize supplied power as a primary control variable
that directly influences the internal temperature of the furnace,
thereby impacting the overall quality of the ceramics. Power
consumption is closely linked to energy usage, constituting a
critical factor in achieving energy-efficient process control
[22].

Accurate acquisition of power and temperature data is
essential for both quality prediction and optimal control in
ceramic manufacturing. Missing values frequently arise due to
sensor aging or failure, which can impair control precision and
degrade the performance of predictive models. Reliable
reconstruction of missing data is necessary to mitigate these
effects [8,9].

Conventional deep learning-based interpolation methods
estimate missing values by identifying patterns within the
data. These methods do not incorporate physical constraints,
causing the resulting outputs to potentially violate
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fundamental physical principles, leading to unreliable
predictions and physically inconsistent synthetic data [13].

The Physics-Informed Neural Network (PINN)
framework addresses this issue by integrating physical laws
into the learning process through a composite loss function
comprising Physics Loss, Initial Condition Loss (IC Loss),
and Boundary Condition Loss (BC Loss), thereby enforcing
compliance with predefined physical relationships [15,16,17].

Traditional PINNs are trained using a single global partial
differential equation (PDE) or ordinary differential equation
(ODE), which limits their applicability in processes exhibiting

process using a single physical law cannot effectively
represent these nonlinear and complex dynamics.

Power serves as a response variable regulated by the
controller to achieve the target temperature, and it exhibits
nonlinear variation depending on process conditions and
external factors. In contrast, the sintering process is designed
based on a target temperature schedule, as shown in Table 1.
Therefore, dividing the process into zones based on time is
justified and reflects physical meaning.

TABLE 1. CERAMIC SINTERING SCHEDULE

abrupt  transitions or heterogeneous  zone-specific

characteristics. This performance degradation stems from
attempting to model complex localized dynamics using a

single governing equation [18,19,20].

To overcome this limitation, we propose a novel Zone-

based PINN (Z-PINN) framework. In our approach, process

data are segmented into time-based zones, and each zone is
independently modeled and trained. This allows for finer

Time (T) Target (° C) Time (T) Target (° C)
0:00 <T <2:00 ~ 100 27:00 < T <28:00 600
2:00<T<3:00 100 28:00 < T <36:00 ~1200
3:00<T<18:00 ~400 36:00 < T <36:20 1200
18:00 < T < 19:00 400 36:20 < T <48:20 ~1635
19:00 < T <27:00 ~600 48:20<T <51:50 1635

representation of localized behaviors, resulting in enhanced
interpolation accuracy and improved adherence to physical
consistency.

III. PROPOSED METHOD

This section introduces the proposed Zone-based Physics-
Informed Neural Network (Z-PINN) framework, which trains
individual PINN models for each time-based zone to capture
complex process dynamics.

Ceramic sintering typically follows a predefined tem
Ceramic sintering typically follows a predefined temperature
schedule over time, where phases such as heating, soaking,
and cooling occur sequentially. Each phase exhibits different
power and temperature change patterns. Modeling the entire
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The process is divided into multiple zones based on the
temperature schedule, as illustrated in Fig. 1, enabling the
capture of locally consistent behaviors within each zone. The
overall Z-PINN architecture is presented in Fig. 2. Each zone
is trained independently using a PINN that shares the same
network structure, the same embedded physical laws (Physics
Loss), and the same components—Initial Condition Loss (IC
Loss) and Boundary Condition Loss (BC Loss). This modular
design allows for flexible application without modifying the
underlying PINN architecture.

In the actual dataset, the full sintering process is divided
into 10 zones, as shown in Table I. An optimal approximating
function is trained for each zone and subsequently
concatenated to form a continuous time-series prediction.
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Fig. 1. Time-based segmentation of the ceramic sintering process according to the temperature schedule.
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Fig. 2. Z-PINN

IV. EXPERIMENTS

This section outlines the dataset, training configuration,
and experimental results. The performance of the proposed Z-
PINN framework is compared with that of a conventional
PINN under three scenarios: short-term missing value
interpolation, long-term missing value interpolation, and data
generation. Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE) are used as evaluation metrics.

n
1
RMSE = |2 (v = 9)? &
i=1
n
1 o
MAE =2 Iy =3 @
i=1

A. Dataset

Eight real-world ceramic sintering cycles were utilized. Of
these, five cycles were used for training, two for validation,
and one for testing, as summarized in Table II. Each cycle
contains 3,110 minutes of data sampled at one-minute
intervals. The dataset includes power, furnace temperature,
ambient temperature, humidity, and pressure, as detailed in
Table I1I.

TABLE IL. SPLIT OF CERAMIC SINTERING DATA
Train Validation Test Total
5 Cycle 2 Cycle 1 Cycle 8 Cycle
TABLE III. EXAMPLE OF SINTERING CYCLE DATASET STRUCTURE
Cycle_ID Time_min Power (W) Sinter_temp (°C)
1 0 5.39513 15.7
1 1 3.940303 16.4025
1 3110 427.7182 1635
Env_temp | Atmospheric pressure(hPa) Humidity (%)
15.7 1000.8 65
15.7 1000.8 66
23.9 1008.1 42
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The primary prediction targets are furnace temperature
and power. Representative patterns of the data are illustrated
in Fig. 3. Three types of missing data scenarios were simulated
as follows:

1) Short-term Missing (MCAR): Randomly removed 30%
of the test data to simulate sensor noise and short-term faults.

2) Long-term Missing: Removed all data except every
15-minute sample to simulate sustained sensor failure.

3) Data Generation: Provided only initial values and
required the model to generate the full time-series under
given physical laws.
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Fig. 3. Target data patterns (Left: Power(W), Right: Sinter _temp(°C))

B. Short-term Missing Interpolation

The results for short-term missing interpolation are
presented in Fig. 4, Fig. 5, and Table VI. The Z-PINN
framework outperformed the conventional PINN across all
evaluation metrics. For temperature prediction, RMSE was
reduced from 36.6611 to 2.8904, and MAE from 15.7514 to
0.8619. For power prediction, RMSE decreased from 18.0662
to 11.0881, and MAE from 5.5840 to 4.0831.
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Fig. 4. Performance of short-term missing value interpolation (RMSE)
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Fig. 5. Performance of short-term missing value interpolation (MAE)

TABLE V. RESULTS FOR LONG-TERM MISSING VALUE

INTERPOLATION
RMSE MAE
Power Temperature Power Temperature
PINN 62.4661 65.8009 41.6128 49.5570
Z-PINN |55 9087 5.1061 13.4768 2.6361
(ours)

TABLE IV. RESULTS FOR SHORT-TERM MISSING VALUE
INTERPOLATION
RMSE MAE
Power Temperature Power Temperature
PINN | 18.0662 36.6611 5.5840 15.7514
Z-PINN 11 0881 2.8904 40831 0.8619
(ours)

C. Long-term Missing Interpolation

The results for long-term missing data are shown in Fig. 6,
Fig. 7, and Table V. Z-PINN achieved substantial
performance improvements. For temperature, RMSE was
reduced from 65.8009 to 5.1061, and MAE from 49.5570 to
2.6361. For power, RMSE decreased from 62.4661 to
22.9087, and MAE from 41.6128 to 13.4768.
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Fig. 6. Performance of long-term missing value interpolation (RMSE)
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Fig. 7. Performance of long-term missing value interpolation (MAE)

D. Data Generation

In the data generation scenario, Z-PINN was tasked with
predicting the full time-series from initial values alone. As
illustrated in Fig. 8, Fig. 9, and Table VI, Z-PINN
demonstrated significant improvements. For temperature,
RMSE decreased from 68.1179 to 5.2983, and MAE from
53.0980 to 2.8306. For power, RMSE fell from 64.6231 to
23.7596, and MAE from 44.5730 to 14.4779. The generated
trends, visualized in Fig. 10 and Fig. 11, closely followed the
actual physical behavior of the process.
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Fig. 8. Performance of Data Generation (RMSE)
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Fig. 9. Performance of Data Generation (MAE)
TABLE VL RESULTS FOR DATA GENERATION
RMSE MAE
Power Temperature Power Temperature
PINN 64.6231 68.1179 44.5730 53.0980
Z-PINN | 53 7596 5.2083 14.4779 2.8306
(ours)
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E. Complexity, Latency, and Memory

We evaluate computational complexity, latency, and
memory of the proposed Z-PINN against a conventional
PINN from both algorithmic and empirical perspectives.



Algorithmically, a fully connected layer of shape mxn costs
roughly 2mn FLOPs. Under this count, Z-PINN (5-64-32-1)
requires about 4.8k FLOPs per forward pass, whereas the
conventional PINN (5-128-256-128-64-32—1) requires

about 153k FLOPs, a~32x% gap.

Empirically, on an RTX 4060 with PyTorch 2.7.1 (eval
mode, batch=1; 50 warm-ups, 200 timed iterations, measured
via CUDA events), each sample is processed only by its
corresponding  zone-specific model (no  cross-zone
ensembling). Z-PINN achieves 0.098 ms (p50) / 0.119 ms
(p95), while the conventional PINN requires 0.316 ms / 0.350
ms (~3.2x speed-up). Parameter counts are 24,970 vs. 78,209
(Z-PINN is ~3.1x smaller), corresponding to FP16 model
sizes of 0.048 MB vs. 0.149 MB. Peak inference memory is
~0.0092 GB for both, dominated by CUDA runtime/allocator
overheads given the small models.

For completeness, we also report a conservative upper-
bound bulk measurement where all zone models are run
sequentially on the entire test set (non-selective): 0.0072 s
(average per zone model) for Z-PINN vs. 0.0174 s for the
conventional model. Sequential training wall-clock on the
same GPU is 21.53 s for Z-PINN (10 zones) and 84.16 s for
the conventional model. (Data sizes: Z-PINN used 4,680
samples in total; the conventional model 5,000; Zone 8 had
180 samples.) Accuracy (MAE/RMSE/MSE) favors Z-PINN
across scenarios.

F. Summary

Z-PINN exhibited superior performance compared to the
conventional PINN across all scenarios:

1. In short-term interpolation, RMSE was reduced by
approximately 38.6% for power and 92.1% for

temperature.

In long-term missing scenarios, Z-PINN provided
stable predictions even under severely limited
observations.

In data generation tasks, Z-PINN successfully
synthesized physically consistent time-series data
from minimal initial input.

Fig. 10. Power (W) predictions in the data generation scenario (Left:
Ground Truth, Center: PINN, Right: Z-PINN(ours))

Fig. 11. Sinter_temp (°C) predictions in the data generation scenario (Left:
Ground Truth, Center: PINN, Right: Z-PINN(ours))

V. CONCLUSION

This paper proposed a Zone-based PINN (Z-PINN)
framework that segments the ceramic sintering process into
multiple time-based zones according to the temperature
schedule and derives optimal approximating functions for
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each zone using independent PINNs. The approach preserves
the original PINN architecture and effectively captures
localized physical behaviors.

Experimental results on real sintering data demonstrated
that Z-PINN outperforms conventional PINNs across short-
term and long-term interpolation scenarios, as well as in data
generation from minimal inputs. Both RMSE and MAE
metrics were consistently lower, and the generated time-series
outputs maintained strong physical consistency even under
severe data scarcity.

However, localized errors still appeared in zones with
highly nonlinear transitions, such as the initial heating phase.
Future work will focus on improving zone segmentation
strategies and integrating hybrid physical models to further
enhance prediction accuracy and physical fidelity in complex
industrial processes.
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