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Abstract— Recent advances in artificial intelligence have 
enabled predictive modeling and control in manufacturing 
processes. However, industrial datasets often suffer from 
missing entries and limited availability due to sensor limitations, 
failures, and high installation costs. Physics-Informed Neural 
Networks (PINNs) incorporate physical laws into the learning 
process, offering physically consistent predictions, but their 
performance deteriorates in complex processes when relying on 
a single global partial differential equation (PDE) or ordinary 
differential equation (ODE). To address this limitation, we 
propose a Zone-based PINN (Z-PINN) framework that divides 
the process timeline into multiple zones based on a predefined 
ceramic sintering schedule and trains a separate PINN for each 
zone. Without modifying the original PINN structure, this 
approach allows localized learning and improves prediction 
accuracy while ensuring physical consistency. We evaluate Z-
PINN on real ceramic sintering data under three scenarios: 
short-term missing values, long-term missing values, and full 
sequence generation from minimal initial inputs. Experimental 
results show that Z-PINN significantly outperforms the 
conventional PINN in all cases, achieving lower Root Mean 
Squared Error (RMSE) and Mean Absolute Error (MAE), and 
producing physically consistent outputs even in data-scarce 
settings. 
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Manufacturing, Ceramic sintering process 

I. INTRODUCTION 
Artificial intelligence (AI)-based technologies have been 

actively adopted in the manufacturing industry for process 
automation, quality prediction, and anomaly detection [1,2]. 
The aging workforce and retirement of experienced operators 
have led to increasing reliance on unskilled personnel, 
exposing the limitations of human-centered control and 
decision-making in processes requiring high precision [3]. 
The concept of the smart factory has emerged to address this 
challenge, demanding high-precision control systems capable 
of replacing the tacit knowledge of skilled workers [4]. 

The core of smart factories lies in models that predict and 
control quality and process conditions using data collected 
from equipment and sensors, which play a vital role in 
maintaining consistent quality [5]. Industrial environments 
often face limitations in data acquisition due to inaccessible 
equipment, costly inspection tools, and high sensor 
installation expenses [6]. Also, missing data—both long-term 
and short-term—frequently occur as a result of equipment 
failures or sensor malfunctions [7]. Such data losses reduce 
the reliability of model training and may significantly 
compromise process stability and product quality if the system 
state at missing timestamps cannot be reconstructed [8,9]. 

The quantity of data available per process unit is generally 
limited in manufacturing settings. Industrial AI applications 

frequently suffer from data scarcity, especially when 
compared to approaches trained on large-scale public datasets 
[10,11]. Interpolating missing values, estimating unobserved 
data points, and generating reliable training datasets from 
limited observations becomes essential [12,13]. 

To address these challenges, this study proposes a data-
driven learning approach guided by physical laws. A Physics-
Informed Neural Network (PINN) framework [14] is adopted, 
embedding physical equations into the loss function to ensure 
physical consistency during training. PINNs have 
demonstrated effectiveness in both predictive accuracy and 
interpretability across various physical domains, including 
heat transfer, fluid dynamics, and structural mechanics 
[15,16,17]. 

Conventional PINNs utilize global partial differential 
equation (PDE) or ordinary differential equation (ODE)-based 
loss formulations, which often lead to degraded performance 
in complex systems characterized by abrupt process condition 
changes or highly nonlinear dynamics [18,19]. This paper 
introduces a Zone-based PINN (Z-PINN) framework to 
overcome this limitation. The process is divided into time-
based zones according to the sintering schedule, and each zone 
is independently modeled using a separate PINN. The 
effectiveness of the proposed method is experimentally 
validated using real power and temperature data collected 
from a ceramic sintering process, with results compared 
against conventional PINN models. 

II. BACKGROUND AND MOTIVATION 
The ceramic sintering process plays a crucial role in 

determining final product quality, including key properties 
such as density, mechanical strength, and color [21]. Electric 
furnaces utilize supplied power as a primary control variable 
that directly influences the internal temperature of the furnace, 
thereby impacting the overall quality of the ceramics. Power 
consumption is closely linked to energy usage, constituting a 
critical factor in achieving energy-efficient process control 
[22]. 

Accurate acquisition of power and temperature data is 
essential for both quality prediction and optimal control in 
ceramic manufacturing. Missing values frequently arise due to 
sensor aging or failure, which can impair control precision and 
degrade the performance of predictive models. Reliable 
reconstruction of missing data is necessary to mitigate these 
effects [8,9]. 

Conventional deep learning-based interpolation methods 
estimate missing values by identifying patterns within the 
data. These methods do not incorporate physical constraints, 
causing the resulting outputs to potentially violate 
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fundamental physical principles, leading to unreliable 
predictions and physically inconsistent synthetic data [13].  

The Physics-Informed Neural Network (PINN) 
framework addresses this issue by integrating physical laws 
into the learning process through a composite loss function 
comprising Physics Loss, Initial Condition Loss (IC Loss), 
and Boundary Condition Loss (BC Loss), thereby enforcing 
compliance with predefined physical relationships [15,16,17]. 

Traditional PINNs are trained using a single global partial 
differential equation (PDE) or ordinary differential equation 
(ODE), which limits their applicability in processes exhibiting 
abrupt transitions or heterogeneous zone-specific 
characteristics. This performance degradation stems from 
attempting to model complex localized dynamics using a 
single governing equation [18,19,20]. 

To overcome this limitation, we propose a novel Zone-
based PINN (Z-PINN) framework. In our approach, process 
data are segmented into time-based zones, and each zone is 
independently modeled and trained. This allows for finer 
representation of localized behaviors, resulting in enhanced 
interpolation accuracy and improved adherence to physical 
consistency. 

III. PROPOSED METHOD 
This section introduces the proposed Zone-based Physics-

Informed Neural Network (Z-PINN) framework, which trains 
individual PINN models for each time-based zone to capture 
complex process dynamics.  

Ceramic sintering typically follows a predefined tem 
Ceramic sintering typically follows a predefined temperature 
schedule over time, where phases such as heating, soaking, 
and cooling occur sequentially. Each phase exhibits different 
power and temperature change patterns. Modeling the entire 

process using a single physical law cannot effectively 
represent these nonlinear and complex dynamics. 

Power serves as a response variable regulated by the 
controller to achieve the target temperature, and it exhibits 
nonlinear variation depending on process conditions and 
external factors. In contrast, the sintering process is designed 
based on a target temperature schedule, as shown in Table I. 
Therefore, dividing the process into zones based on time is 
justified and reflects physical meaning. 

TABLE I.  CERAMIC SINTERING SCHEDULE 

Time (T) Target (° C) Time (T) Target (° C) 

0:00 ≤ T < 2:00 ~ 100 27:00 ≤ T < 28:00 600 

2:00 ≤ T < 3:00 100 28:00 ≤ T < 36:00 ~1200 

3:00 ≤ T < 18:00 ~400 36:00 ≤ T < 36:20 1200 

18:00 ≤ T < 19:00 400 36:20 ≤ T < 48:20 ~1635 

19:00 ≤ T < 27:00 ~600 48:20 ≤ T < 51:50 1635 

 

The process is divided into multiple zones based on the 
temperature schedule, as illustrated in Fig. 1, enabling the 
capture of locally consistent behaviors within each zone. The 
overall Z-PINN architecture is presented in Fig. 2. Each zone 
is trained independently using a PINN that shares the same 
network structure, the same embedded physical laws (Physics 
Loss), and the same components—Initial Condition Loss (IC 
Loss) and Boundary Condition Loss (BC Loss). This modular 
design allows for flexible application without modifying the 
underlying PINN architecture. 

In the actual dataset, the full sintering process is divided 
into 10 zones, as shown in Table I. An optimal approximating 
function is trained for each zone and subsequently 
concatenated to form a continuous time-series prediction.

 
Fig. 1. Time-based segmentation of the ceramic sintering process according to the temperature schedule. 
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Fig. 2. Z-PINN Architecture

IV. EXPERIMENTS 
This section outlines the dataset, training configuration, 

and experimental results. The performance of the proposed Z-
PINN framework is compared with that of a conventional 
PINN under three scenarios: short-term missing value 
interpolation, long-term missing value interpolation, and data 
generation. Root Mean Squared Error (RMSE) and Mean 
Absolute Error (MAE) are used as evaluation metrics. 

  1   
  1 

  1 |  |
  2 

A. Dataset 
Eight real-world ceramic sintering cycles were utilized. Of 

these, five cycles were used for training, two for validation, 
and one for testing, as summarized in Table II. Each cycle 
contains 3,110 minutes of data sampled at one-minute 
intervals. The dataset includes power, furnace temperature, 
ambient temperature, humidity, and pressure, as detailed in 
Table III.  

TABLE II.  SPLIT OF CERAMIC SINTERING DATA 

Train Validation Test Total 

5 Cycle 2 Cycle 1 Cycle 8 Cycle 

TABLE III.  EXAMPLE OF SINTERING CYCLE DATASET STRUCTURE 

Cycle_ID Time_min Power (W) Sinter_temp (°C) 

1 0 5.39513 15.7 

1 1 3.940303 16.4025 

︙ ︙ ︙ ︙ 

1 3110 427.7182 1635 

Env_temp Atmospheric pressure(hPa) Humidity (%) 

15.7 1000.8 65 

15.7 1000.8 66 

︙ ︙ ︙ 

23.9 1008.1 42 

The primary prediction targets are furnace temperature 
and power. Representative patterns of the data are illustrated 
in Fig. 3. Three types of missing data scenarios were simulated 
as follows: 

1) Short-term Missing (MCAR): Randomly removed 30% 
of the test data to simulate sensor noise and short-term faults. 

2) Long-term Missing: Removed all data except every 
15-minute sample to simulate sustained sensor failure. 

3) Data Generation: Provided only initial values and 
required the model to generate the full time-series under 
given physical laws. 

 
Fig. 3. Target data patterns (Left: Power(W), Right: Sinter_temp(°C)) 

 

B. Short-term Missing Interpolation 
The results for short-term missing interpolation are 

presented in Fig. 4, Fig. 5, and Table VI. The Z-PINN 
framework outperformed the conventional PINN across all 
evaluation metrics. For temperature prediction, RMSE was 
reduced from 36.6611 to 2.8904, and MAE from 15.7514 to 
0.8619. For power prediction, RMSE decreased from 18.0662 
to 11.0881, and MAE from 5.5840 to 4.0831. 

 
Fig. 4. Performance of short-term missing value interpolation (RMSE) 
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Fig. 5. Performance of short-term missing value interpolation (MAE) 

TABLE IV.  RESULTS FOR SHORT-TERM MISSING VALUE 
INTERPOLATION 

 RMSE MAE 

Power Temperature Power Temperature 

PINN 18.0662 36.6611 5.5840 15.7514 
Z-PINN 
(ours) 11.0881 2.8904 4.0831 0.8619 

 

C. Long-term Missing Interpolation 
The results for long-term missing data are shown in Fig. 6, 

Fig. 7, and Table V. Z-PINN achieved substantial 
performance improvements. For temperature, RMSE was 
reduced from 65.8009 to 5.1061, and MAE from 49.5570 to 
2.6361. For power, RMSE decreased from 62.4661 to 
22.9087, and MAE from 41.6128 to 13.4768. 

 
Fig. 6. Performance of long-term missing value interpolation (RMSE) 

 
Fig. 7. Performance of long-term missing value interpolation (MAE) 

TABLE V.  RESULTS FOR LONG-TERM MISSING VALUE 
INTERPOLATION 

 RMSE MAE 

Power Temperature Power Temperature 

PINN 62.4661 65.8009 41.6128 49.5570 
Z-PINN 
(ours) 22.9087 5.1061 13.4768 2.6361 

 

D. Data Generation 
In the data generation scenario, Z-PINN was tasked with 

predicting the full time-series from initial values alone. As 
illustrated in Fig. 8, Fig. 9, and Table VI, Z-PINN 
demonstrated significant improvements. For temperature, 
RMSE decreased from 68.1179 to 5.2983, and MAE from 
53.0980 to 2.8306. For power, RMSE fell from 64.6231 to 
23.7596, and MAE from 44.5730 to 14.4779. The generated 
trends, visualized in Fig. 10 and Fig. 11, closely followed the 
actual physical behavior of the process. 

 
Fig. 8. Performance of Data Generation (RMSE) 

 
Fig. 9. Performance of Data Generation (MAE) 

TABLE VI.  RESULTS FOR DATA GENERATION 

 RMSE MAE 

Power Temperature Power Temperature 

PINN 64.6231 68.1179 44.5730 53.0980 
Z-PINN 
(ours) 23.7596 5.2983 14.4779 2.8306 

 

E. Complexity, Latency, and Memory 
We evaluate computational complexity, latency, and 

memory of the proposed Z-PINN against a conventional 
PINN from both algorithmic and empirical perspectives. 
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Algorithmically, a fully connected layer of shape × costs 
roughly 2 FLOPs. Under this count, Z-PINN (5–64–32–1) 
requires about 4.8k FLOPs per forward pass, whereas the 
conventional PINN (5–128–256–128–64–32–1) requires 
about 153k FLOPs, a∼32× gap. 

Empirically, on an RTX 4060 with PyTorch 2.7.1 (eval 
mode, batch=1; 50 warm-ups, 200 timed iterations, measured 
via CUDA events), each sample is processed only by its 
corresponding zone-specific model (no cross-zone 
ensembling). Z-PINN achieves 0.098 ms (p50) / 0.119 ms 
(p95), while the conventional PINN requires 0.316 ms / 0.350 
ms (~3.2× speed-up). Parameter counts are 24,970 vs. 78,209 
(Z-PINN is ~3.1× smaller), corresponding to FP16 model 
sizes of 0.048 MB vs. 0.149 MB. Peak inference memory is 
~0.0092 GB for both, dominated by CUDA runtime/allocator 
overheads given the small models.  

For completeness, we also report a conservative upper-
bound bulk measurement where all zone models are run 
sequentially on the entire test set (non-selective): 0.0072 s 
(average per zone model) for Z-PINN vs. 0.0174 s for the 
conventional model. Sequential training wall-clock on the 
same GPU is 21.53 s for Z-PINN (10 zones) and 84.16 s for 
the conventional model. (Data sizes: Z-PINN used 4,680 
samples in total; the conventional model 5,000; Zone 8 had 
180 samples.) Accuracy (MAE/RMSE/MSE) favors Z-PINN 
across scenarios. 

F. Summary 
Z-PINN exhibited superior performance compared to the 

conventional PINN across all scenarios:  

1. In short-term interpolation, RMSE was reduced by 
approximately 38.6% for power and 92.1% for 
temperature. 

2. In long-term missing scenarios, Z-PINN provided 
stable predictions even under severely limited 
observations.  

3. In data generation tasks, Z-PINN successfully 
synthesized physically consistent time-series data 
from minimal initial input. 

 
Fig. 10. Power (W) predictions in the data generation scenario (Left: 

Ground Truth, Center: PINN, Right: Z-PINN(ours)) 

 
Fig. 11. Sinter_temp (°C) predictions in the data generation scenario (Left: 

Ground Truth, Center: PINN, Right: Z-PINN(ours)) 

 

V. CONCLUSION 
This paper proposed a Zone-based PINN (Z-PINN) 

framework that segments the ceramic sintering process into 
multiple time-based zones according to the temperature 
schedule and derives optimal approximating functions for 

each zone using independent PINNs. The approach preserves 
the original PINN architecture and effectively captures 
localized physical behaviors. 

Experimental results on real sintering data demonstrated 
that Z-PINN outperforms conventional PINNs across short-
term and long-term interpolation scenarios, as well as in data 
generation from minimal inputs. Both RMSE and MAE 
metrics were consistently lower, and the generated time-series 
outputs maintained strong physical consistency even under 
severe data scarcity. 

However, localized errors still appeared in zones with 
highly nonlinear transitions, such as the initial heating phase. 
Future work will focus on improving zone segmentation 
strategies and integrating hybrid physical models to further 
enhance prediction accuracy and physical fidelity in complex 
industrial processes. 
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