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Abstract—The AAM (Advanced Air Mobility) is an alternative
transportation system for passengers and cargo, designed to
safely and efficiently serve both urban and rural locations. To
safely operate the AAM system, the AAM requires a collision
avoidance function using onboard sensors to monitor small
aircraft without information transmission capabilities. Among
various onboard sensors, camera systems are frequently utilized
due to their ability to detect long-range objects using low-cost
hardware, it is largely attributed to the advanced algorithms such
as deep neural networks (DNNs). However, large DNN models
often face challenges in operating efficiently on edge devices, such
as mobile phones or other embedded platforms. The knowledge
distillation (KD) is a key strategy for reducing network size to
meet the demands of industrial applications. However, complex
preprocessing schemes for KD hinder an accurate assessment of
its standalone performance. To demonstrate the potential of KD
in low-cost embedded systems without relying on such schemes,
we apply a state-of-the-art KD method with an appropriate
batch size strategy to the CIFAR-100 dataset to evaluate its
performance.

Index Terms—AAM, CPFSK, GFSK, QPSK, OQPSK, RRC,
PAPR, OOB

I. INTRODUCTION

Advanced Air Mobility (AAM) is an emerging alternative
transportation system that operates at low altitude, typically
between 300 and 600 meters. It requires a higher level of safety
than ground-based transportation due the operational charac-
teristics inherent to aeronautical systems. To ensure safe and
efficient operation of the AAM system, key components such
as vehicle-to-vehicle (V2V) communication system, which
transmit an aircraft’s status and intentions to surrounding air-
craft, and the onboard sensing system for collision avoidance
are required.

The onboard sensing system detects and identifies the sur-
rounding object, including small aircraft that lack information
transmission capabilities. Among various onboard sensors,
camera systems are widely employed because they can de-
tect long-range objects with relatively low-cost hardware, a
capability made possible by advanced algorithms such as
deep neural networks (DNNs), including model like YOLO, a
real-time object detection algorithm known for its speed and

accuracy. The advancement of DNN technology has led to
significant developments in the fields of computer vision [1],
speech recognition [2] and natural language processing [3].

Although powerful network models are used to improve
performance, these powerful network models normally require
high computational and storage costs, making it challenging
for such systems to be applied in industrial domains. Knowl-
edge Distillation (KD), popularized by Hinton [4], addresses
this challenge by transferring knowledge from a large, complex
model (teacher) to a smaller, more efficient model (student). In
this approach, the student model is trained using soft targets
generated by the teacher model, enabling high performance
while reducing resource requirements. KD is particularly valu-
able in resource-constrained environments, such as mobile
devices or embedded systems.

Numerous studies have been conducted to reduce model
size while minimizing the loss in accuracy. These approaches
can be broadly categorized into two main types: logit-based
methods and intermediate feature-based methods, depending
on whether they utilize features extracted from multiple inter-
mediate layers. More specifically, KD can be further refined
by incorporating relation-based methods, which aim to capture
and transfer the relational information between instances.

Since the introduction of FitNet [5], most subsequent re-
search has focused on feature-based methods due to their
superior performance compared to logit-based distillation.
However, feature-based approaches generally incur higher
computational and storage demands during training. To alle-
viate this burden, more advanced logit-based algorithms have
been developed, aiming to achieve competitive performance
while maintaining lower resource requirements.

The Teacher Assistant Knowledge Distillation (TACK) [6]
focuses on the logit-based performance worsen when there is
a large discrepancy between the teacher and student outputs.
Therefore, it reduces this discrepancy by resorting to an
additional teaching assistant of moderate model size. And the
Knowledge Distillation from a Stronger Teacher (DIST) [7]
proposes a relation-based loss to relax the strict requirement
of Kullback-Leibler (KL) divergence matching. This approach
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defines a distance metric between the softened teacher and
student predictions using correlation information, computed
either batch-wise or class-wise.

Although these studies utilize logits, their primary focus has
been on regularization and indirect comparison. To enhance
performance by leveraging the higher-level semantics of logits,
several works have revitalized logit-based approaches. For
instance, the Decoupled Knowledge Distillation (DKD) [8]
method assigns separate weights to target and non-target com-
ponents, while the Multi-Level Learning Distillation (MLLD)
[9] method introduces instance-level, batch-level, and class-
level alignment of logit outputs.

In this study, we evaluate the performance of the recently
proposed Logit Standardization in Knowledge Distillation
method [10]. This approach demonstrates that employing
distinct teacher–student temperatures, in combination with
sample-wise adaptive temperatures, can yield superior results.
Our study highlights its potential for deployment in low-cost
embedded systems by systematically tuning commonly used
parameters, such as batch size, temperature, and weight co-
efficients to achieve competitive performance without relying
on data augmentation.

II. THE LOGIT STANDARDIZATION IN KNOWLEDGE
DISTILLATION

In classic supervised learning, the student network is trained
by penalizing the cross-entropy loss between output of student
network and the ground-truth label y ∈ RC , where C is the
number of classes.

LCE(zS ,y) =
�
c∈C

y(c) ∗ log(pS(c))

where pS = softmax(zS) represents the predicted proba-
bility distribution of the student network, and c is index of
classes.

In Knowledge Distillation, popularized by Hinton, Vinyals,
and Dean [4], this method tries to train the student network
by minimizing not only cross-entropy between the output of
student network in softmax layer and ground-truth label, but
also the KL divergence loss between two soften predictions
obtained from the teacher/student network with a fixed tem-
perature τ in the softmax layer.

KL(pT ||pS) =
�
c∈C

pT (c)log

�
pT (c)

pS(c)

�

where pT = softmax
�zT

τ

�
,pS = softmax

�zS
τ

�

The temperature τ controls the smoothness of the distri-
bution. A lower τ sharpens the distribution, enlarging the
difference between two distributions and making the distil-
lation process focus on the maximal logits of the teacher’s
predictions. In contrast, a higher τ flattens the distribution,
narrowing the gap between the distribution and encouraging
the distillation process to consider the entire distribution.

Many studies have been conducted to improve performance,
and these approaches generally assume that the teacher and

student share the same temperature value. However, the logit
standardization in knowledge distillation [10] analyzes the
effect of shared temperatures and demonstrates that using
distinct temperatures for the teacher and student, as well as
sample-wise adaptive temperatures, is more effective. This
approach aligns with the principle of entropy maximization
with a flexible Lagrangian multiplier.

The Logit Standardization in Knowledge Distillation high-
lights that, in classification tasks, the softmax function is
the unique solution for maximizing entropy under the nor-
malization condition of probability and a constraint on the
expectation of state in information theory. Extending this
derivation, the entropy maximization formulation is applied in
the context of KD rather than standard classification. Given a
well-trained teacher with prediction pT , the objective function
for student prediction is formulated as follows:

max
pS

L = −
N�

n=1

C�
c=1

p
(n)
S (c)log(p

(n)
S (c))

s.t.




C�
c=1

p
(n)
S = 1, ∀n

C�
c=1

z
(n)
S (c)p

(n)
S (c) = z

(n)
S (yn), ∀n

C�
c=1

z
(n)
S (c)p

(n)
S (c) =

C�
c=1

z
(n)
S (c)p

(n)
T (c), ∀n

Applying the Lagrangian multipliers and taking the partial
derivative with respect to pS , leads to the following solution
form by setting the derivative to zero:

p
(n)
S (c) =

exp(β(n)z
(n)
S (c))�C

c=1 exp(β
(n)z

(n)
S (c))

where β(n) is a variable that depends on instance n.
Using the above derivations, this scheme defines general

formulation by introducing two parameters µS and τS :

p
(n)
S (c) =

exp((z
(n)
S (c)− µS)/τS)�C

c=1 exp((z
(n)
S (c)− µS)/τS)

Assuming a well-distilled student model minimizes the KL-
divergence loss, its predicted probability distribution aligns
with that of the teacher i, e., ∀c ∈ [1, C], pT (c) = pS(c).

Then for arbitrary pair of indices c1, c2 ∈ [1, C], it can
easily lead to

exp((z
(n)
S (c1)− µS)/τS)

exp((z
(n)
S (c2)− µS)/τS)

=
exp((z

(n)
T (c1)− µT )/τT )

exp((z
(n)
T (c2)− µT )/τT )

From above equation, the following relation can be derived:

(z
(n)
S (c1)− z

(n)
S (c2))/τS = (z

(n)
T (c1)− z

(n)
T (c2))/τT

Moreover, by taking a summation across c2 from 1 to C, we
obtain

(z
(n)
S (c)− z̄S) = (z

(n)
T (c)− z̄T )
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where z̄ is the mean value of the logits. Subsequently, by
summing the squared differences over c2 from 1 to C, the
following relationship holds:

std(zS)
2

std(zT )2
=

1
C

∑C
c=1(z

(n)
S (c)− z̄S)

2

1
C

∑C
c=1(z

(n)
T (c)− z̄T )2

=
τ2S
τ2T

This relationship indicates that for a well-distilled student
model, the following conditions should hold:

z
(n)
S = z

(n)
T +∆(n),

std(zS)

std(zT )
=

τS
τT

However, due to the gap in model size and capacity, the
student may be unable to produce as wide a logit range as the
teacher. Consequently, the condition involving ∆(n) cannot be
satisfied, breaking the well-distillation condition. Moreover,
when τS = τT (as assumed in previous work), it requires
std(zS) = std(zT ) for the well-distillation condition to hold.
However, this condition is often violated.

In this paper, to satisfy these conditions, a standardiza-
tion method for logits is introduced. This method effectively
achieves an outcome equivalent to applying instance-specific
temperatures, such as (std(zS)τ), (std(zT )τ).

p
(n)
S (c) = exp

((
(z

(n)
S (c)− z̄

(n)
S )/std(z

(n)
S )

)
/τ)

)

p
(n)
T (c) = exp

((
(z

(n)
T (c)− z̄

(n)
T )/std(z

(n)
T )

)
/τ)

)

This standardization ensures that the relative differences be-
tween logits are more significant than their absolute values,
thereby enhancing the robustness of the distillation process.

III. PARAMETER AND SIMULATION RESULT

Although data augmentation is an effective technique to
enhance a model’s performance, it hinders the fair evaluation
of a rigorous algorithmic performance comparisons. To miti-
gate such effects and quantitatively evaluate the performance
of the recently proposed Logit Standardization in Knowledge
Distillation, this study presents a comparative analysis of
conventional KD and Logit Standardization in KD for ResNet-
8×4 on the CIFAR-100 dataset. For both methods, experiments
were conducted with optimally tuned baseline parameters to
ensure fair and reliable comparisons. Figures 1 and 2 demon-
strate the Logit Standardization in KD achieves a consistent
reduction in loss and a corresponding improvement in accuracy
compared to the baseline model.

Algorithm 1: Weighted Z-score function
Input: Input matrix X and τ
Output: Standardized matrix Z(X, τ)
Init: Y = zeros(B,K), where B: batch size, K:

image class number.
foreach b = 0 : (B-1) do

x = X(b, :)
x̄ ← 1

K

∑K
k=1 x(k)

σ(x) ←
√

1
K

∑K
k=1(x(k)− x̄)

Y(b, :) = (x− x̄)/σ(x)/τ

Return: Y

Algorithm 2: Weighted Z-score function logit sta-
nardization pre-process in knowledge distillation.

Input: Transfer set D with image-label sample pair
{(Xn,yn)} with batch size 128, Teacher fT ,
Student fS , Kullback-Leibler Loss LKL, Cross
Entropy Loss LCE

Output: Trained student model fS
Init: Max accuracy = 0, Max epoch = 250, Base

Temperature τ = 4.0, Loss weight α = 0.011 and
β = 8.01

Optimizer: SGD optimizer with a stepwise learning
rate schedule, starting at a learning rate of 0.1 and
decreasing by a factor of 0.1 at predefined decay
points such as 150, 180 and 210.

foreach epoch in {1,..., Max epoch} do
foreach (Xn,yn) in D do

Vn ← fT (Xn), Zn ← fS(Xn)
q′(Zn) ← softmax(Zn, 1.0)
q(Vn) ← softmax(Z(Vn, τ))
q(Zn) ← softmax(Z(Zn, τ))
Update fS towards minimizing

LKD =
α·LCE(yn, q

′(Zn))+β·τ2·LKL(q(Vn), q(Zn))

accuracy = performance of fS on D
If: epoch >= Min of predefined decay points

If: accuracy > Max accuracy
Max accuracy = accuracy
Save model parameter

Learning rate update according to schedule using
epoch

Loss and accuracy results:
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Fig. 1. Comparison of Loss Between Vanilla KD and Logit Standardization
KD
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Fig. 2. Comparison of Accuracy Between Vanilla KD and Logit Standard-
ization KD

IV. CONCLUSION

In this paper, we analyze the effectiveness of the Logit
Standardization-based Knowledge Distillation algorithm for
efficient onboard implementation. Through optimal parameter
tuning and a comparison with conventional KD on the CIFAR-
100 dataset without data augmentation, we demonstrate that
Logit Standardization consistently delivers more stable and
superior performance. This approach supports deployment on
AAM platforms with minimal hardware overhead and low
cost, thereby improving deployment flexibility and enhancing
industrial applicability.
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