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Abstract— The performance, lifespan, and safety of lithium-
ion battery packs are critically dependent on thermal 
management. A key challenge is the temperature inhomogeneity 
among cells in multi-channel cooling structures, which amplifies 
electrothermal instability, leading to localized degradation and 
performance deterioration. Conventional control methods, such 
as PID or rule-based controls, struggle to address the complex 
and nonlinear dynamics of the system and are limited in their 
ability to ensure temperature uniformity as they typically rely 
on average or maximum temperature values. This study 
proposes an active and homogeneous cooling control strategy 
for multi-channel battery modules using Deep Reinforcement 
Learning (DRL). The proposed controller takes real-time state 
inputs from the battery module including multi-point 
temperatures, voltage, and current to execute continuous 
actions that individually adjust the coolant flow rate in each 
channel. A multi-objective reward function was designed to 
consider four critical goals simultaneously: Safety, Uniformity, 
Energy Efficiency, and Control Stability, enabling the agent to 
learn a policy that achieves these complex objectives. The 
efficacy of the proposed method was validated using the Twin-
Delayed Deep Deterministic policy gradient (TD3) algorithm in 
a high-fidelity simulation environment. The results demonstrate 
that the DRL controller significantly reduces the maximum 
temperature deviation compared to conventional methods and 
optimizes the energy consumed for cooling, thereby enhancing 
the overall performance and durability of the battery system. 
This research presents a successful application of a data-driven, 
intelligent control technique to the complex problem of battery 
thermal management and is expected to contribute to the 
advancement of thermal management technologies for high-
performance electric vehicles and energy storage systems. 
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I. INTRODUCTION 
As high-energy-density lithium-ion batteries become 

central components in electric vehicles (EVs) and energy 
storage systems (ESS), the importance of the Battery Thermal 
Management System (BTMS) has become more pronounced 
than ever. The optimal operating temperature range for 
batteries is generally known to be between 20°C and 40°C. 
Operating outside this range can lead to performance 
degradation, reduced lifespan, and, in severe cases, safety 
issues like thermal runaway [1, 2]. 

However, traditional thermal management research has 
primarily focused on maintaining the 'maximum temperature' 
of the battery pack within safe limits. This study argues that 
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such an approach is insufficient for ensuring the long-term 
reliability of the battery system and posits that achieving 
'temperature homogeneity' among the cells within the pack is 
a more fundamental challenge. Even minor temperature 
differences can cause variations in the electrochemical 
properties of cells, leading to imbalanced current distribution 
and, consequently, differences in heat generation. This 
positive feedback loop of 'electro-thermal instability' 
amplifies temperature deviations over time, accelerating the 
premature degradation of specific cells and reducing the 
lifespan and available capacity of the entire pack [2, 5]. 
According to research, a temperature difference of just 5°C 
can increase thermal aging by 25% and reduce pack capacity 
by up to 2% [2]. 

Commonly used air and liquid cooling systems can 
themselves be a source of the problem, as the cooling medium 
inevitably heats up as it absorbs heat, creating a temperature 
gradient between the inlet and outlet [4, 5]. Furthermore, 
Proportional-Integral-Differential (PID) controllers, which 
are widely used in industry, have a fundamental limitation in 
that they control the entire system based on a single value, 
such as the average temperature, thus failing to consider the 
spatial distribution of temperature [11]. 

 
Fig. 1. BESS Liquid Cooling System schematic. 

Therefore, this paper proposes Deep Reinforcement 
Learning (DRL) as a solution to effectively respond to the 
complex and nonlinear thermal dynamics of batteries and to 
intelligently control a multi-channel cooling system to 
maximize temperature homogeneity. As a model-free 
approach, reinforcement learning is ideal for this problem 
because it can learn an optimal control policy through data-
driven interactions without requiring a perfect mathematical 
model of the system. In this study, we formulate the battery 
thermal management problem as a Markov Decision Process 
(MDP) and aim to develop an optimal controller by designing 
a multi-objective reward function that considers safety, 
uniformity, efficiency, and stability. 
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II. REINFORCEMENT LEARNING PROBLEM FORMULATION 
To solve the homogeneous cooling problem for a battery 

module, we formalize it within the framework of a Markov 
Decision Process (MDP). An MDP is defined by an agent (the 
controller), an environment (the battery system), a set of states, 
a set of actions, and a reward function. 

A. Sate Space Design 
The state (st) is the set of information the agent observes 

from the system at a specific time t. For effective control, the 
state must comprehensively represent the thermal and 
electrical distribution of the system. The state vector is 
composed as follows: 

• Multi-point Temperatures (Tcells): Cell surface 
temperatures measured from multiple sensors 
distributed throughout the module. This is a key 
element providing spatial information about the 
temperature distribution [15, 16]. 

• Coolant Inlet/Outlet Temperatures (Tcoolant): Indicates 
the overall heat removal performance of the cooling 
system. 

• Electrical State (Ipack,Vpack): The total current and 
voltage of the pack. This provides crucial information 
for predicting the current load status and near-future 
heat generation [15]. 

• Internal State Estimates (SoCcells, SoHcells): The State 
of Charge (SoC) and State of Health (SoH) of each cell. 
These values, estimated by the Battery Management 
System (BMS), allow the agent to learn the changes in 
dynamics due to cell degradation [8]. 

• Ambient Temperature (Tambient): A variable to account 
for the thermal load from the external environment 
[15]. 

B. Action Space Design 
The action (at) is the decision the agent makes after 

observing the state st. To achieve the goal of localized 
temperature control, we design a multi-dimensional, 
continuous action space that allows for independent control of 
each cooling channel. For a 4-channel liquid cooling system, 
the action vector is as follows: 

  at=flow_ratech1flow_ratech2flow_ratech3flow_ratech4 () 

The flow rate for each channel is a continuous value within 
the range [0,flowmax], enabling the agent to perform precise 
and differential control, such as directing more coolant flow 
to hotter areas. 

C. Multi-objective Reward Function Design 
The reward function (rt) is the most critical design element 

that guides the agent's learning process. To achieve the 
complex objectives required for battery thermal management, 
this study proposes a multi-objective reward function that 
combines four goals in the form of negative penalties. The 
agent learns to minimize the sum of these penalties (i.e., 
maximize the cumulative reward). 

                rt= rsafety + runiformity +refficiency + rstability () 

• Safety Penalty (rsafety): Enforces that the battery cell 
temperature does not exceed a predefined safety limit 
(Tlimit). A quadratic term is used to ensure the penalty 
increases exponentially as the temperature surpasses 
the limit. 

                   rsafety=−ws⋅max(0, Tmax_cells−Tlimit)2 () 

• Uniformity Penalty (runiformity): The core penalty for 
ensuring temperature homogeneity. It combines the 
max-min temperature difference to control outliers and 
the standard deviation (σ) to consider the overall 
temperature distribution. 

           runiformity=−wu1⋅(Tmax_cells−Tmin_cells)−wu2⋅σ(Tcells)  () 

• Energy Efficiency Penalty (refficiency): Discourages 
excessive energy consumption by the cooling system 
(pumps, fans, etc.). This minimizes unnecessary 
cooling operations and increases overall system 
efficiency. 

                 refficiency=−we⋅Pcooling                                          () 

• Control Stability Penalty (rstability): A penalty 
considering real-world hardware application, which 
suppresses abrupt changes in the control values 
(actions). This reduces mechanical stress on actuators 
and ensures stable system operation. 

                rstability=−wst⋅∣at−at−1∣2                            () 

The weights for each penalty term (ws , wu1, wu2, we , wst ) 
are hyperparameters that must be carefully tuned according to 
the priority of the control objectives. 

III. DEEP REINFORCEMENT LEARNING ALGORITHMS 
To select a suitable DRL algorithm for this problem with 

a continuous action space, we compare and analyze major off-
policy actor-critic algorithms. Since high-fidelity battery 
simulations are computationally expensive, off-policy 
methods, which improve learning efficiency through data 
reuse, are overwhelmingly advantageous compared to on-
policy methods (e.g., PPO). 

 
Fig. 2. Deep RL Algorithm Comparison. 
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A. DDPG (Deep Deterministic Policy Gradient) 
An early actor-critic algorithm for continuous action 

spaces that learns a deterministic policy. However, it is often 
prone to unstable learning due to the overestimation bias of Q-
values and sensitivity to hyperparameters [17]. 

B. TD3 (Twin-Delayed Deep Deterministic policy gradient) 
An algorithm proposed to solve the overestimation bias 

problem of DDPG. It uses two independent critic networks to 
mitigate bias in Q-value estimation and delays policy updates 
to significantly improve learning stability. As it learns a 
deterministic policy, it is highly predictable and suitable for 
safety-critical systems [21]. 

C. SAC (Soft Actor-Critic) 
An algorithm that aims to maximize not only the 

cumulative reward but also the entropy of the policy. 
Maximizing entropy encourages exploration by the agent, 
enabling more robust and efficient learning. Although it learns 
a stochastic policy, it generally exhibits high performance and 
stability [22]. 

In this study, the TD3 algorithm is adopted as the primary 
learning algorithm. TD3 offers improved stability and 
performance over DDPG. Furthermore, its deterministic 
policy is easier to predict and verify compared to the 
stochastic policy of SAC, making it more suitable for 
deployment in real industrial systems. 

IV. IMPLEMENTATION AND VERIFICATION PLAN 
A systematic 4-step roadmap is established for the 

development and deployment of the proposed reinforcement 
learning controller, progressively moving from simulation to 
actual hardware. 

A. Step 1: High-Fidelity Virtual Environment Construction 
Directly training on a real battery is impractical due to time, 

cost, and safety concerns. Therefore, building a high-fidelity 
simulation environment is a prerequisite. We will use 
MATLAB/Simulink's Simscape Battery and Simscape Fluids 
toolboxes to model the electro-thermal dynamics of the 
battery and the multi-channel cooling system. This Simulink 
environment will be interfaced with a Python reinforcement 
learning library (e.g., PyTorch) to serve as the training 
environment for the agent. 

B. Step 2: Sim2Real Problem Solving and Virtual 
Verification 
The policy trained in simulation may suffer performance 

degradation in the real world due to the "Sim2Real Gap". To 
address this, we apply the Domain Randomization technique. 
During simulation, physical parameters such as internal 
resistance, thermal conductivity, and sensor noise are 
randomly varied within a certain range during agent training. 
This forces the agent to learn a robust control policy that is 
resilient to various environmental changes [30]. 

C. Step 3: Hardware-in-the-Loop (HIL) Verification 
The trained control policy is deployed on an actual 

controller (ECU) and interfaced with a virtual battery model 
running on a real-time simulator for HIL verification. This 
step allows for thorough, risk-free testing of the controller's 
real-time performance, communication delays, and fault-
handling capabilities before interacting with physical 
hardware [27]. 

D. Step 4: Prototype Testing and Deployment 
The controller that passes HIL verification is applied to a 

physical battery prototype for final performance evaluation. 
Data is collected under various real-world driving scenarios 
and charging/discharging conditions, and the policy is fine-
tuned as necessary to prepare for final deployment. 

V. COMPARISON OF SYSTEM CONTROL RESPONSE 
CHARACTERISTICS AND CUMULATIVE POWER CONSUMPTION 

IN SIMULATION 

 
Fig. 3. Compariono of Control System Reponses. 

This is a graph comparing the response characteristics of 
On/Off, PID, and Reinforcement Learning (RL) control 
methods. It illustrates how each control method regulates a 
system over time to reach a specific target value (Setpoint). 

A. Legend 
• Dotted Line (Setpoint): Target Value 

• Orange Line : On/Off Control 

• Green Line : PID Control 

• Blue Line : Reinforcement Learning Control 

B. Characteristics of Each Control Method 
• On/Off Control: As the simplest control method, it 

causes the system variable to continuously fluctuate 
above and below the target value, a behavior known as 
oscillation. Precise control is difficult to achieve with 
this method. 

• PID Control: A widely used method in industrial 
applications, the PID controller is much more stable 
and precise than On/Off control. It typically 
overshoots the target value initially before gradually 
stabilizing and converging at the setpoint. 

• Reinforcement Learning (RL) Control: This method 
achieves the best performance among the three. It 
reaches the target value quickly and smoothly with no 
overshoot. This is because it learns the system's 
characteristics to find the optimal control strategy. 
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Fig. 4. Cumulative Power Consumption Comparison. 

C. Analysis of Power Consumption by Control Method 
• On/Off Control (Orange Line): This method 

continuously consumes unnecessary energy by simply 
switching the cooling system on and off. As seen in the 
graph, the cumulative consumption increases most 
steeply and results in the highest total, making it the 
least energy-efficient. 

• PID Control (Green Line): Initially, this controller uses 
a relatively large amount of power to reach the target 
temperature, but power usage decreases after the 
system stabilizes. While much more efficient than 
On/Off control, it still requires continuous power to 
maintain a stable system. 

• Reinforcement Learning Control (Blue Line): This 
method demonstrates the most optimized energy usage. 
It uses only the necessary amount of power to achieve 
the initial goal, and after reaching the target, it uses 
minimal power to maintain the state. The graph shows 
the slope becoming very gentle after the initial phase, 
ultimately achieving the best energy efficiency with 
the lowest total power consumption. 

VI. REINFORCEMENT LEARNING SIMULATION FOR CONTROL 
VALUE CALCULATION OF A SIMPLE MODEL 

TABLE I.  SIMULATION CONDITION 

Operating Voltage / Heater capacity 

350V rated / 3.3kW PTC heater 

PID Tunning values 

(Before heating) Kp : 125, Ki : 15, Kb: 0 / Target temperature : 8℃ 

(After heating)   Kp : 130, Ki : 40, Kb: 0 / Target temperature : 30℃ 

Climate Chamber set 

Ambient Temperature : 40℃, Humidity : 60% 

DRL temperature control range 

29℃ ~ 31℃ 

BTMS AI control range 
Compressor speed : 1500 ~ 4000 rpm 
EXV : 432 ~ 480 (max: 480) 
CFAN : 30% ~ 100% 
PUMP : 90% 

Calculated data 

Superheat, Subcool, Specific heat, Efficiency coefficient 

Data collecting method 

Operating Voltage / Heater capacity 
Every step collecting by Python demon 

➢ Calculated reward 
➢ Save to web server DB 
➢ Every step value show on Dashboard 

Monitored data 
Compressor, EXV, Ambient temperature, Humidity, High pressure, 
Low pressure, Refrigerant high/low temperature, Inlet/ outlet 
temperature, Liquid mass flow 

Control data 

Compressor, EXV 

Current learning reward data and additional data 
Current learning reward data : outlet temperature 
Additional data : Efficiency coefficient, Superheat, Subcool 

Learning reward score 
Every step regulated value reward measure (0~1) 
Setting reward data rated every step score will be max 1 
Total reward data recording 

TABLE II.  TESTED DATASET FOR REINFORCEMENT LEARNING 

 
 

 
Fig. 5. Compressor, EXV, Outlet temperature average data. 

In each experiment, the control values for the 
Compressor and EXV are uniformly distributed from 1% to 
100%, causing the average control value to generally 
converge around 50%. Starting with Experiment ID 477, the 
external temperature was set to 40°C, which resulted in the 
observation of a slight upward trend in the discharge port 
temperature.  

 
Fig. 6. Scatter Plot of Compressor and EXV Data from All Experiments. 
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The scatter plot of the Compressor and EXV data from 
the entire experiment shows that the combination of the two 
variables is evenly distributed across all ranges. This 
distribution characteristic indicates that data was collected 
under a wide variety of operating conditions. This provides a 
foundation for an in-depth analysis of the correlation and 
various data patterns between the Compressor and EXV. 

[Comparison of Compressor and EXV for RL Simulation and PID] 

 
Fig. 7. BESS Liquid Cooling System schematic. 

The simulation results confirm that the control of the 
Compressor and EXV is relatively more stable, with a smaller 
fluctuation range, compared to the PID method. This 
indicates that the control algorithm in the simulation 
environment operates in a more refined manner. However, 
this result serves as a comparative analysis between the 
simulation and the actual PID environment. Further 
quantitative comparison with experimental data under the 
current chamber conditions is necessary. 

 
Fig. 8. Temperature difference within 3 degrees, BESS homogeneous 
cooling control. 

CONCLUSION 
This study proposed an intelligent thermal management 

strategy based on deep reinforcement learning to address the 
temperature homogeneity problem in multi-channel battery 
modules. To overcome the limitations of conventional control 
methods, the problem was formulated as an MDP, considering 
the spatial and nonlinear characteristics of the battery system. 
A multi-objective reward function encompassing safety, 
uniformity, efficiency, and stability was designed. TD3, an 
algorithm known for its stability and predictability, was 
chosen as the primary learning algorithm, and a systematic 
implementation roadmap from simulation to hardware was 
presented. The proposed reinforcement learning controller can 
actively adapt to changing load and environmental conditions 
in real-time to optimally distribute the coolant flow rate in 
each channel, thereby maximizing the temperature uniformity 
of the entire battery pack. This will directly contribute to 
preventing localized degradation and improving the overall 
lifespan and safety of the battery. Future research could 
include extending this work to Multi-Agent Reinforcement 
Learning (MARL) for controlling an entire pack system 
composed of multiple modules, and incorporating Explainable 

AI (XAI) techniques to ensure the reliability of the control 
policy. The data-driven, intelligent control approach presented 
in this study is expected to serve as an important foundation 
for the development of advanced thermal management 
technologies for next-generation electric vehicles and energy 
storage systems. 
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