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Abstract— The performance, lifespan, and safety of lithium-
ion battery packs are critically dependent on thermal
management. A key challenge is the temperature inhomogeneity
among cells in multi-channel cooling structures, which amplifies
electrothermal instability, leading to localized degradation and
performance deterioration. Conventional control methods, such
as PID or rule-based controls, struggle to address the complex
and nonlinear dynamics of the system and are limited in their
ability to ensure temperature uniformity as they typically rely
on average or maximum temperature values. This study
proposes an active and homogeneous cooling control strategy
for multi-channel battery modules using Deep Reinforcement
Learning (DRL). The proposed controller takes real-time state
inputs from the battery module including multi-point
temperatures, voltage, and current to execute continuous
actions that individually adjust the coolant flow rate in each
channel. A multi-objective reward function was designed to
consider four critical goals simultaneously: Safety, Uniformity,
Energy Efficiency, and Control Stability, enabling the agent to
learn a policy that achieves these complex objectives. The
efficacy of the proposed method was validated using the Twin-
Delayed Deep Deterministic policy gradient (TD3) algorithm in
a high-fidelity simulation environment. The results demonstrate
that the DRL controller significantly reduces the maximum
temperature deviation compared to conventional methods and
optimizes the energy consumed for cooling, thereby enhancing
the overall performance and durability of the battery system.
This research presents a successful application of a data-driven,
intelligent control technique to the complex problem of battery
thermal management and is expected to contribute to the
advancement of thermal management technologies for high-
performance electric vehicles and energy storage systems.
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[. INTRODUCTION

As high-energy-density lithium-ion batteries become
central components in electric vehicles (EVs) and energy
storage systems (ESS), the importance of the Battery Thermal
Management System (BTMS) has become more pronounced
than ever. The optimal operating temperature range for
batteries is generally known to be between 20°C and 40°C.
Operating outside this range can lead to performance
degradation, reduced lifespan, and, in severe cases, safety
issues like thermal runaway [1, 2].

However, traditional thermal management research has
primarily focused on maintaining the 'maximum temperature'
of the battery pack within safe limits. This study argues that
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such an approach is insufficient for ensuring the long-term
reliability of the battery system and posits that achieving
'temperature homogeneity' among the cells within the pack is
a more fundamental challenge. Even minor temperature
differences can cause variations in the electrochemical
properties of cells, leading to imbalanced current distribution
and, consequently, differences in heat generation. This
positive feedback loop of 'electro-thermal instability’
amplifies temperature deviations over time, accelerating the
premature degradation of specific cells and reducing the
lifespan and available capacity of the entire pack [2, 5].
According to research, a temperature difference of just 5°C
can increase thermal aging by 25% and reduce pack capacity
by up to 2% [2].

Commonly used air and liquid cooling systems can
themselves be a source of the problem, as the cooling medium
inevitably heats up as it absorbs heat, creating a temperature
gradient between the inlet and outlet [4, 5]. Furthermore,
Proportional-Integral-Differential (PID) controllers, which
are widely used in industry, have a fundamental limitation in
that they control the entire system based on a single value,
such as the average temperature, thus failing to consider the
spatial distribution of temperature [11].

Fig. 1. BESS Liquid Cooling System schematic.

Therefore, this paper proposes Deep Reinforcement
Learning (DRL) as a solution to effectively respond to the
complex and nonlinear thermal dynamics of batteries and to
intelligently control a multi-channel cooling system to
maximize temperature homogeneity. As a model-free
approach, reinforcement learning is ideal for this problem
because it can learn an optimal control policy through data-
driven interactions without requiring a perfect mathematical
model of the system. In this study, we formulate the battery
thermal management problem as a Markov Decision Process
(MDP) and aim to develop an optimal controller by designing
a multi-objective reward function that considers safety,
uniformity, efficiency, and stability.
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II. REINFORCEMENT LEARNING PROBLEM FORMULATION

To solve the homogeneous cooling problem for a battery
module, we formalize it within the framework of a Markov
Decision Process (MDP). An MDP is defined by an agent (the
controller), an environment (the battery system), a set of states,
a set of actions, and a reward function.

A. Sate Space Design

The state (st) is the set of information the agent observes
from the system at a specific time t. For effective control, the
state must comprehensively represent the thermal and
electrical distribution of the system. The state vector is
composed as follows:

e Multi-point Temperatures (Tcens): Cell  surface
temperatures measured from multiple sensors
distributed throughout the module. This is a key
element providing spatial information about the
temperature distribution [15, 16].

e Coolant Inlet/Outlet Temperatures (Tcoolant): Indicates
the overall heat removal performance of the cooling
system.

e Electrical State (Ipack,Vpack): The total current and
voltage of the pack. This provides crucial information
for predicting the current load status and near-future
heat generation [15].

o Internal State Estimates (SoCcens, SOHcens): The State
of Charge (SoC) and State of Health (SoH) of each cell.
These values, estimated by the Battery Management
System (BMS), allow the agent to learn the changes in
dynamics due to cell degradation [8].

e Ambient Temperature (Tambient): A variable to account
for the thermal load from the external environment
[15].

B. Action Space Design

The action (at) is the decision the agent makes after
observing the state st. To achieve the goal of localized
temperature control, we design a multi-dimensional,
continuous action space that allows for independent control of
each cooling channel. For a 4-channel liquid cooling system,
the action vector is as follows:

at=[flow_ratechl flow_ratech2 flow ratech3 flow ratech4] (1)

The flow rate for each channel is a continuous value within
the range [0,flowmax], enabling the agent to perform precise
and differential control, such as directing more coolant flow
to hotter areas.

C. Multi-objective Reward Function Design

The reward function (rt) is the most critical design element
that guides the agent's learning process. To achieve the
complex objectives required for battery thermal management,
this study proposes a multi-objective reward function that
combines four goals in the form of negative penalties. The
agent learns to minimize the sum of these penalties (i.e.,
maximize the cumulative reward).

Vt= Fsafety + Funiformity +re/ﬁciency + Vstability (2)
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e Safety Penalty (rsarty): Enforces that the battery cell
temperature does not exceed a predefined safety limit
(Tiimit)- A quadratic term is used to ensure the penalty
increases exponentially as the temperature surpasses
the limit.

Fsafety= " Ws 'max((), mecicells_ Tlimit)z (3)

e Uniformity Penalty (funiformity): The core penalty for
ensuring temperature homogeneity. It combines the
max-min temperature difference to control outliers and
the standard deviation (o) to consider the overall
temperature distribution.

Vuniformity="Wul '(Tmaxicells_ TminicellA) —Wy2 'O-(Tcella) (4)

e Energy Efficiency Penalty (Tefficiency): Discourages
excessive energy consumption by the cooling system
(pumps, fans, etc.). This minimizes unnecessary
cooling operations and increases overall system

efficiency.
Fefficiency™= " We 'Pcooling (5)
e Control Stability Penalty (Tswbilty): A penalty

considering real-world hardware application, which
suppresses abrupt changes in the control values
(actions). This reduces mechanical stress on actuators
and ensures stable system operation.

Fstability=— Wst '|at_at71|2 (6)

The weights for each penalty term (ws , w1, Wi2, We , Wy )
are hyperparameters that must be carefully tuned according to
the priority of the control objectives.

III. DEEP REINFORCEMENT LEARNING ALGORITHMS

To select a suitable DRL algorithm for this problem with
a continuous action space, we compare and analyze major off-
policy actor-critic algorithms. Since high-fidelity battery
simulations are computationally expensive, off-policy
methods, which improve learning efficiency through data
reuse, are overwhelmingly advantageous compared to on-
policy methods (e.g., PPO).

Deep RL Algorithm Comparison
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Fig. 2. Deep RL Algorithm Comparison.



A. DDPG (Deep Deterministic Policy Gradient)

An early actor-critic algorithm for continuous action
spaces that learns a deterministic policy. However, it is often
prone to unstable learning due to the overestimation bias of Q-
values and sensitivity to hyperparameters [17].

B. TD3 (Twin-Delayed Deep Deterministic policy gradient)

An algorithm proposed to solve the overestimation bias
problem of DDPG. It uses two independent critic networks to
mitigate bias in Q-value estimation and delays policy updates
to significantly improve learning stability. As it learns a
deterministic policy, it is highly predictable and suitable for
safety-critical systems [21].

C. SAC (Soft Actor-Critic)

An algorithm that aims to maximize not only the
cumulative reward but also the entropy of the policy.
Maximizing entropy encourages exploration by the agent,
enabling more robust and efficient learning. Although it learns
a stochastic policy, it generally exhibits high performance and
stability [22].

In this study, the TD3 algorithm is adopted as the primary
learning algorithm. TD3 offers improved stability and
performance over DDPG. Furthermore, its deterministic
policy is easier to predict and verify compared to the
stochastic policy of SAC, making it more suitable for
deployment in real industrial systems.

IV. IMPLEMENTATION AND VERIFICATION PLAN

A systematic 4-step roadmap is established for the
development and deployment of the proposed reinforcement
learning controller, progressively moving from simulation to
actual hardware.

A. Step 1: High-Fidelity Virtual Environment Construction

Directly training on a real battery is impractical due to time,
cost, and safety concerns. Therefore, building a high-fidelity
simulation environment is a prerequisite. We will use
MATLAB/Simulink's Simscape Battery and Simscape Fluids
toolboxes to model the electro-thermal dynamics of the
battery and the multi-channel cooling system. This Simulink
environment will be interfaced with a Python reinforcement
learning library (e.g., PyTorch) to serve as the training
environment for the agent.

B. Step 2: Sim2Real Problem Solving and Virtual
Verification

The policy trained in simulation may suffer performance
degradation in the real world due to the "Sim2Real Gap". To
address this, we apply the Domain Randomization technique.
During simulation, physical parameters such as internal
resistance, thermal conductivity, and sensor noise are
randomly varied within a certain range during agent training.
This forces the agent to learn a robust control policy that is
resilient to various environmental changes [30].

C. Step 3: Hardware-in-the-Loop (HIL) Verification

The trained control policy is deployed on an actual
controller (ECU) and interfaced with a virtual battery model
running on a real-time simulator for HIL verification. This
step allows for thorough, risk-free testing of the controller's
real-time performance, communication delays, and fault-
handling capabilities before interacting with physical
hardware [27].
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D. Step 4: Prototype Testing and Deployment

The controller that passes HIL verification is applied to a
physical battery prototype for final performance evaluation.
Data is collected under various real-world driving scenarios
and charging/discharging conditions, and the policy is fine-
tuned as necessary to prepare for final deployment.

V. COMPARISON OF SYSTEM CONTROL RESPONSE
CHARACTERISTICS AND CUMULATIVE POWER CONSUMPTION
IN SIMULATION

Comparison of Control System Responses
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Fig. 3. Compariono of Control System Reponses.

This is a graph comparing the response characteristics of
On/Off, PID, and Reinforcement Learning (RL) control
methods. It illustrates how each control method regulates a
system over time to reach a specific target value (Setpoint).

A. Legend
Dotted Line (Setpoint): Target Value

e Orange Line : On/Off Control
e Green Line : PID Control

e Blue Line : Reinforcement Learning Control

B. Characteristics of Each Control Method

e On/Off Control: As the simplest control method, it
causes the system variable to continuously fluctuate
above and below the target value, a behavior known as
oscillation. Precise control is difficult to achieve with
this method.

e PID Control: A widely used method in industrial
applications, the PID controller is much more stable
and precise than On/Off control. It typically
overshoots the target value initially before gradually
stabilizing and converging at the setpoint.

e Reinforcement Learning (RL) Control: This method
achieves the best performance among the three. It
reaches the target value quickly and smoothly with no
overshoot. This is because it learns the system's
characteristics to find the optimal control strategy.
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Fig. 4.

Cumulative Power Consumption Comparison.

C. Analysis of Power Consumption by Control Method

On/Off Control (Orange Line): This method
continuously consumes unnecessary energy by simply
switching the cooling system on and off. As seen in the
graph, the cumulative consumption increases most
steeply and results in the highest total, making it the
least energy-efficient.

PID Control (Green Line): Initially, this controller uses
a relatively large amount of power to reach the target
temperature, but power usage decreases after the
system stabilizes. While much more efficient than
On/Off control, it still requires continuous power to
maintain a stable system.

Reinforcement Learning Control (Blue Line): This

method demonstrates the most optimized energy usage.

It uses only the necessary amount of power to achieve
the initial goal, and after reaching the target, it uses
minimal power to maintain the state. The graph shows
the slope becoming very gentle after the initial phase,
ultimately achieving the best energy efficiency with
the lowest total power consumption.

VI. REINFORCEMENT LEARNING SIMULATION FOR CONTROL

VALUE CALCULATION OF A SIMPLE MODEL

TABLE L. SIMULATION CONDITION

Operating Voltage / Heater capacity

350V rated / 3.3kW PTC heater

PID Tunning values

(Before heating) Kp : 125, Ki : 15, Kb: 0/ Target temperature : 8°C

(After heating) Kp : 130, Ki : 40, Kb: 0/ Target temperature : 30°C

Climate Chamber set

Ambient Temperature : 40°C, Humidity : 60%

DRL temperature control range

29°C ~31°C

BTMS Al control range

Compressor speed : 1500 ~ 4000 rpm
EXV : 432 ~ 480 (max: 480)

CFAN : 30% ~ 100%

PUMP : 90%

Calculated data

Superheat, Subcool, Specific heat, Efficiency coefficient

Data collecting method
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Operating Voltage / Heater capacity

Every step collecting by Python demon
»  Calculated reward
»  Save to web server DB
»  Every step value show on Dashboard

Monitored data

Compressor, EXV, Ambient temperature, Humidity, High pressure,
Low pressure, Refrigerant high/low temperature, Inlet/ outlet
temperature, Liquid mass flow

Control data

Compressor, EXV

Current learning reward data and additional data

Current learning reward data : outlet temperature
Additional data : Efficiency coefficient, Superheat, Subcool

Learning reward score

Every step regulated value reward measure (0~1)
Setting reward data rated every step score will be max 1
Total reward data recording

TABLE II. TESTED DATASET FOR REINFORCEMENT LEARNING
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Fig. 5. Compressor, EXV, Outlet temperature average data.

In each experiment, the control values for the
Compressor and EXV are uniformly distributed from 1% to
100%, causing the average control value to generally
converge around 50%. Starting with Experiment ID 477, the
external temperature was set to 40°C, which resulted in the
observation of a slight upward trend in the discharge port
temperature.
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Fig. 6. Scatter Plot of Compressor and EXV Data from All Experiments.



The scatter plot of the Compressor and EXV data from
the entire experiment shows that the combination of the two
variables is evenly distributed across all ranges. This
distribution characteristic indicates that data was collected
under a wide variety of operating conditions. This provides a
foundation for an in-depth analysis of the correlation and

various data patterns between the Compressor and EXV.
[Comparison of Compressor and EXV for RL Simulation and PID]

Fig. 7. BESS Liquid Cooling System schematic.

The simulation results confirm that the control of the
Compressor and EXV is relatively more stable, with a smaller
fluctuation range, compared to the PID method. This
indicates that the control algorithm in the simulation
environment operates in a more refined manner. However,
this result serves as a comparative analysis between the
simulation and the actual PID environment. Further
quantitative comparison with experimental data under the
current chamber conditions is necessary.

Fig. 8. Temperature difference within 3 degrees, BESS homogeneous
cooling control.

CONCLUSION

This study proposed an intelligent thermal management
strategy based on deep reinforcement learning to address the
temperature homogeneity problem in multi-channel battery
modules. To overcome the limitations of conventional control
methods, the problem was formulated as an MDP, considering
the spatial and nonlinear characteristics of the battery system.
A multi-objective reward function encompassing safety,
uniformity, efficiency, and stability was designed. TD3, an
algorithm known for its stability and predictability, was
chosen as the primary learning algorithm, and a systematic
implementation roadmap from simulation to hardware was
presented. The proposed reinforcement learning controller can
actively adapt to changing load and environmental conditions
in real-time to optimally distribute the coolant flow rate in
each channel, thereby maximizing the temperature uniformity
of the entire battery pack. This will directly contribute to
preventing localized degradation and improving the overall
lifespan and safety of the battery. Future research could
include extending this work to Multi-Agent Reinforcement
Learning (MARL) for controlling an entire pack system
composed of multiple modules, and incorporating Explainable
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Al (XAI) techniques to ensure the reliability of the control
policy. The data-driven, intelligent control approach presented
in this study is expected to serve as an important foundation
for the development of advanced thermal management
technologies for next-generation electric vehicles and energy
storage systems.
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