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Abstract—While in-domain fine-tuning remains one approach
to adapt models under data scarcity, the primary goal of
foundation models is to reduce unnecessary training by lever-
aging prompting, as demonstrated in large language models
(LLMs). However, while text-to-text or vision-to-text tasks have
been extensively studied with well-established evaluation metrics,
vision-to-vision tasks remain comparatively underexplored, and
reliable evaluation methodologies are still lacking. To address this
gap, we propose an evaluation-driven framework that utilizes
GPT-5 to analyze the predictions of vision-only models. Based
on these evaluations, we employ a vision foundation model to
perform historic map retrieval, where current satellite images
are retrieved by embedding both historic and modern images
and matching them through cosine similarity without additional
training. As a preliminary step, we first evaluate an image-to-text
task, circuit diagram classification, where GPT-based evaluation
guides whether performance can be improved purely through
prompting without fine-tuning. Building on these findings, we
propose a tailored training-free adaptation method for the image-
to-image setting of historic map retrieval. Our approach achieves
a Recall at 1 score of 30.3% and demonstrates the practicality
of evaluation-guided prompting for vision-only foundation model
adaptation.

Index Terms—large vision models, zero-shot learning, historic
map retrieval, circuit diagram classification, evaluation-guided
prompting

I. INTRODUCTION

In computer vision, the rapid progress of deep learning
has largely centered on supervised models trained on large-
scale labeled datasets. These models tend to show strong
performance only on the data they were trained on, and
recent attention has therefore shifted to whether they can
be applied to previously unseen patterns, such as inspecting
newly developed products. Recent foundation models, often
referred to as large vision models (LVMs), are trained on
massive and heterogeneous datasets, enabling them to capture
broad semantic knowledge. By leveraging such large-scale
and diverse supervision, these models exhibit robust zero-
shot capabilities across a variety of visual tasks, ranging
from classification and detection to segmentation and retrieval,
without the need for task-specific fine-tuning [1]-[3].

In real-world implementations, LVMs are sometimes trained
with additional labeled datasets to improve performance in
specialized domains. However, as shown in works such as

This work was supported by IITP-ITRC grant funded by MSIT (IITP-2025-
RS-2020-11201808).

634

DINO [4], directly retraining all weights for domain adaptation
can disrupt previously learned representations and degrade
generalization. To mitigate this, recent approaches have ex-
plored partial tuning strategies, where only a subset of parame-
ters is updated while keeping most of the backbone frozen [5]-
[8]. In transformer architectures, domain adaptation is often
performed by training the classification head to learn new
class embeddings or by decomposing weight matrices into
smaller trainable components for fine-grained tuning. While
these approaches reduce computational cost and mitigate
catastrophic forgetting [9], they inherently replace the original
embedding-matching mechanism of zero-shot inference with
a supervised classification structure. This shift highlights a
fundamental trade-off between efficiency, specialization, and
the preservation of the embedding-based inference principle.

In a related field, large language models (LLMs) address
the challenges of retraining and fine-tuning through prompt-
based adaptation. Instead of updating model weights—which
in LVMs often introduces risks such as computational over-
head or degradation of pre-trained representations. In practice,
personalization is achieved by augmenting prompts, often with
retrieval-augmented generation (RAG), allowing users to adapt
models to specific tasks without additional training. Moreover,
prompting serves not only as an efficient method for task
adaptation but also as a scalable and flexible framework for
evaluation [10]-[12]. The effectiveness of this paradigm relies
on the quality of text tokens, as stronger prompts derived from
fixed sentences yield more reliable outputs [13]. Motivated
by this perspective, this paper investigates the use of GPT-
driven prompting to evaluate pure vision models, aiming to
improve performance without retraining. The approach can be
viewed as transferring vision-to-text outputs from LLMs into
vision-to-vision prompts, thereby establishing a cross-modal
connection without the need for additional training.

Our objective is to evaluate the applicability of pure vision
models in challenging tasks such as circuit diagram classi-
fication and historic map retrieval [14], both of which re-
quire aligning heterogeneous visual patterns. Unlike language-
centric domains where prompting is naturally applicable, pure
vision tasks do not readily allow the use of GPT-style prompt-
ing. In this paper, we novelly introduce GPT-driven evaluation
as a means to analyze misclassifications and, based on these
insights, propose how performance can be improved in pure
vision models without additional training.
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Fig. 1. Illustration of zero-shot retrieval outcomes using ImageBind. Subfigure
(a) shows the input image to be classified, (b) indicates the correct target class,
and (c) is the model’s incorrect prediction.

The main contributions of this paper are summarized as
follows:

« We present an evaluation protocol for LVMs using state-
of-the-art LLMs as reference and introduce a vision-to-
vision prompting approach to improve zero-shot classifi-
cation without additional training.

« We validate the proposed approach through GPT-driven
evaluation on the Low-Resource Large Vision Model
Challenge, confirming its effectiveness in practical vision
tasks.

o We contribute to improving the usability of Large Vision
Models by demonstrating how GPT-driven evaluation can
guide performance enhancement without retraining.

II. TEXT-BASED EVALUATION

When applying large vision models (LVMs) to domain-
specific tasks, evaluation is often limited to checking whether
the output matches the target, without revealing the reasons for
errors. As illustrated in Fig. 1, misclassified cases only indicate
that the prediction is wrong, not why it failed. While domain
experts may infer causes, such as recognizing component
roles in a circuit, this is not feasible in automated evaluation.
These limitations motivate a GPT-driven evaluation framework
that goes beyond visual similarity and provides interpretable
reasoning for misclassifications.

Recent advances such as ChatGPT have shown that large
language models can perform multimodal tasks, including
image analysis and online search. These capabilities build on
progress in text—image embedding, where visual and linguistic
features are aligned in a shared latent space for flexible
recognition. A prominent example is CLIP [15], which jointly
trains image and text encoders to maximize similarity for
matched pairs and minimize it for mismatches. In zero-shot
settings, categories are represented by templated prompts (e.g.,
“a photo of a {class}”), and predictions rely on cosine simi-
larity in the embedding space. To further improve alignment,
context optimization (CoOp) [16] replaces static prompts with
learnable continuous context vectors. While these approaches
enhance adaptability, they struggle to separate semantically
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“This circuit is an LED indicator rather than an alarm.”

Power: 5V DC input via diode (D1: 1N4007) and resistor (R5), also
usable for charging a 3.6V Ni-Cd battery.

Sensor: L14F1 phototransistor with T2 (BC549) switches according to
light input and sends a signal to the logic IC.

Logic: CD4081 (four 2-input AND gates) generates the conditions for
LED activation.

Output: LED1 (white) lights up when both sensor input and logic
conditions are satisfied

Fig. 2. Example of a misclassified sample where both the LVM encoder
and the GPT-5 evaluation produced the same incorrect prediction. The
circuit is not a simple “LED indicator” but an alarm circuit in which the
L14F1 phototransistor detects incoming light, the CD4081 AND gate controls
activation, and the white LED (LED1) serves as a visual alarm.

similar class names, highlighting the need to refine not only
model parameters but also the structure and specificity of
prompts used for inference.

In low-resource domains, such as those in the low-resource
image transfer evaluation (LITE) benchmark [17], the limita-
tions of zero-shot models are more evident. As shown in Fig. 2,
both the LVM encoder and GPT evaluation can yield the same
incorrect prediction. Unlike the LVM-only setting, however,
GPT provides textual reasoning that explains the misclassifica-
tion. For instance, it may label a circuit as an “LED indicator”
because an LED is visible, yet fail to infer that the overall
design functions as an alarm. With additional prompts, GPT
can clarify that the L14F1 phototransistor detects incoming
light, the CD4081 AND gate ensures conditional activation,
and the white LED (LEDI1) serves as a visual alarm. This
demonstrates that GPT-driven feedback not only identifies the
cause of errors but also guides model improvement under
limited supervision.

III. APPLICATION ON VISION-ONLY DATASET

In vision-only tasks, it is often necessary to reason over
patterns that were learned in different styles. A representa-
tive example is historic map retrieval, where each map is
drawn with a distinct artistic style, yet must be matched to
its corresponding modern satellite image. Unlike text-driven
settings, this is a pure vision-to-vision problem, which calls
for new approaches beyond conventional embedding similarity.
To better understand visual decision dynamics in such tasks,
we evaluated retrieval behavior using GPT as a diagnostic
proxy. As shown in Fig. 3, GPT exhibited classification
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Fig. 3. Illustration of GPT-guided zero-shot retrieval in the historic map to
satellite image matching task. The figure shows how GPT initially produces an
incorrect prediction, but when provided with additional prompt information,
it can reason about contextual cues and correctly identify the location as
Belgium, Brussels.

patterns similar to those of LVM encoders, misidentifying
the target satellite image due to an overreliance on radial
grid patterns that dominated the embedding representation.
However, when the prompt was modified to deprioritize radial
layout and emphasize peripheral attributes, GPT’s diagnostic
evaluation showed that the correct image could be retrieved
by focusing on outer road structures. This result indicates that
GPT can reveal how global structural features—particularly
dominant radial configurations—disproportionately influence
cosine similarity outcomes, thereby underscoring the need to
disentangle global patterns from finer contextual cues when
designing vision-only similarity measures.

Motivated by the GPT evaluation results and [18], which
revealed that similarity judgments were dominated by global
radial structures while neglecting finer details, we adopt a
pure-vision classification approach that explicitly disentangles
global and local components. Historic maps are matched to
modern satellite imagery through cosine similarity of visual
features, while ImageBind embeddings are decomposed into
complementary representations: global patterns are extracted
via low-pass filtering and statistical averaging, and local varia-
tions are captured through high-pass residuals and frequency-
domain separation using the fast Fourier transform (FFT).
Formally, given embeddings f; and f; from two images, their
similarity and decomposition are defined as:

f = fiow + fhign (D
. <fi7fj>
sim(f;, ;) = —2 I/ )
A N

where f denotes the original embedding, f'° and fhieh
represent the low- and high-frequency components obtained

through decomposition, and sim(f;, f;) is the cosine similarity
between two embeddings f; and f;.

As illustrated in Fig. 5, our framework separates high-
frequency and low-frequency components from visual embed-
dings, computes cosine similarity for each, and integrates them
through a weighted combination, o - simgjopal + 3 - SiMgegail-
This hybrid formulation enables flexible emphasis on either
structural layout or fine-grained components depending on
task-specific demands. To further interpret model behavior,
we employed GPT to analyze visual attention patterns and
identify retrieval errors. The evaluation revealed that base-
line models tend to focus excessively on dominant global
features, such as radial grids, while overlooking peripheral
contextual structures. In contrast, our method highlights outer
road networks—features that GPT identified as critical for
correctly distinguishing spatially similar yet functionally dis-
tinct regions. These results demonstrate that multi-scale visual
similarity, supported by GPT-based interpretation, provides
a more robust and interpretable foundation for pure-vision
classification tasks.

IV. EXPERIMENTAL RESULTS
A. Dataset and Evaluation Index

We conduct experiments on the low-resource image trans-
fer evaluation (LITE) benchmark introduced by Zhang et
al. [17]. The LITE benchmark includes three low-resource
vision tasks—circuit diagram classification, historic map re-
trieval, and mechanical drawing retrieval—with only a few
hundred labeled samples per task. For example, circuit diagram
classification comprises 154 train, 100 validation, and 1,078
test images; historic map retrieval includes 102 train, 140
validation, and 409 test samples; In this work, we evaluate
models in a zero-shot setting using only the test splits without
any training or fine-tuning.

For performance assessment, we use standard retrieval
metrics. Circuit diagram classification is measured by Top-1
and Top-5 accuracy, while historic map retrieval is evaluated
using Recall@l (R@1), Recall@5 (R@5), and mean rank
(MnR). Top-1 accuracy indicates the proportion of samples
for which the correct class is ranked first, whereas Top-5
accuracy measures whether the correct class appears within
the top five predictions. Similarly, higher values of Top-k and
R@F correspond to better retrieval accuracy, while a lower
MnR reflects improved ranking quality.

B. Experimental Results

We evaluate our approach using the pre-trained ImageBind-
huge encoder [19]. For circuit diagram classification, we refine
the text embeddings by adopting domain-specific prompts such
as “signal transmitter circuit with power amplifier, oscillator,
and antenna output stage” versus “‘signal receiver circuit with
low-noise amplifier, mixer, demodulator, and antenna input
stage,” instead of generic templates like “a circuit diagram
of {amplifier}.” For historic map retrieval, we decompose the
embeddings into global and local components and compute
cosine similarity for each before combining them into a hybrid
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“Radial grid mixed”:
Several roads extend radially
from the city center, while the
spaces in between are filled with
grid-like streets.

Wrong Target
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Tllustration of the proposed zero-shot enhancement. (a) shows the decomposition of image embeddings into high-frequency and low-frequency

components, followed by separate cosine similarity computations. (b) presents the retrieval outcome, where the baseline model attends only to radial grid
structures, whereas the proposed method captures peripheral road networks that are functionally more discriminative.

similarity score, enabling the model to capture both large-scale
layouts and finer contextual cues.

The results are summarized in Table I. For circuit diagram
classification, our domain-specific prompts improved Top-
1/Top-5 accuracy from 19.3/45.1% to 21.2/50.2%. For historic
map retrieval, our method raised R@1 from 28.1% to 30.3%
and achieved a lower MnR (10.3 vs. 13.4) while maintaining
comparable R@5 performance. These results confirm that
global-local disentanglement and prompt refinement enhance
zero-shot evaluation.

V. DISCUSSION AND CONCLUSION

This paper highlights the increasing use of LVMs for
domain-specific tasks without training. In such settings, the
quality and design of prompts play a critical role in deter-
mining performance. However, relying solely on vision-to-
vision similarity without textual prompts remains challenging,
as current models still struggle to capture domain-specific
semantics in a purely visual manner. This indicates that vision-
only prompting strategies are not yet sufficient to achieve
robust performance.

Nevertheless, as demonstrated in this paper, employing
GPT-driven evaluation provides a valuable diagnostic tool that
exposes the underlying causes of misclassification and guides
the refinement of domain-specific prompts. This underscores
the importance of systematic evaluation when deploying large
vision models in specialized tasks. Furthermore, our findings
confirm that even without additional fine-tuning, LVMs can de-
liver meaningful performance in low-resource, domain-specific
settings through zero-shot classification supported by auxiliary
evaluation mechanisms. In this sense, evaluation is not only
a means of assessing performance but also a key enabler for
making zero-shot LVMs practical in real-world applications.
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(a) Thinking-only — Wrong
Conclusion: Alarm (break-wire alarm).

Reason: Focused on audible actuator - labeled as
“alarm”.
Note: Identified NE555 astable (~1.63—1.64 Hz) but
did not verify current path when loop intact (Q1

OFF - no sound). /

(a) Chat GPT-5 Thinking

Zero Shot CoT Style Prompt Instructions

Judge by paths/thresholds & OK/FAULT
ON/OFF; no appearance, no numbers.

eUse 6-part template: Summary, Assumptions,
Timeline, State Table, Classification,
Pseudocode.

eTimeline t0->13; include latch/oscillation &
accidental-ON checks.

eName via R1/R2; include simulation-ready
pseudocode.
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(a) + prompt instructions — Correct
Conclusion: Indicator (break-wire indicator).

Reason: NE555 astable; loop open - Q1 (PNP)
sources +9 V, 555 LOW sinks - pulsed buzzer; loop
intact > Q1 OFF - no path.

Timing: f = 1.63-1.64 Hz (R1=1k, R2=440k, C=1 uF),
duty = 50%.

Takeaway: Function-first prompting avoids actuator

bias and yields the correct verdict. /

(b) Ours

Fig. 5. Illustration of circuit reasoning outcomes. (a) ChatGPT-5 thinking-only approach misclassifies the design as an alarm due to actuator bias. (b) With
zero-shot CoT style prompt instructions, the same circuit is correctly classified as a break-wire indicator, showing that function-first prompting yields the
correct verdict.
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