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Abstract—Real-time 3D object detection is essential for au-
tonomous driving, enabling rapid understanding of dynamic en-
vironments. While voxel-based methods excel due to their struc-
tured representation and high accuracy, they face computational
bottlenecks stemming from the costliness of 3D convolutions
and transformer attention, which hinders real-time deployment.
Unlike linear recurrent neural network designs such as Mamba,
we propose a lightweight MLP-based operator that replaces
these components with parallelizable feed-forward blocks, en-
abling efficient, geometry-aware feature learning in sparse voxel
backbones. On the KITTI benchmark, the proposed operator
achieves accuracy within ≈1% of a Mamba-based baseline across
AP3D , APBEV , APbbox, and APaos, while reducing forward
latency from 126.58ms to 123.99ms (∼2.0%) and increasing
inference throughput from 15.80 to 16.13 samples/s (∼2.1%)
under identical settings. These results demonstrate its suitability
for scalable, real-time 3D perception in autonomous systems.

Index Terms—3D Object Detection, Autonomous Driving,
MLP, Voxel-based, KITTI.

I. INTRODUCTION

Efficient and accurate 3D object detection is crucial for
autonomous driving [1], where real-time environmental under-
standing directly impacts safety. Voxel-based methods domi-
nate due to their ability to convert irregular point clouds into
structured 3D grids for effective spatial reasoning. However,
their reliance on computationally intensive 3D convolutions,
transformer-based attention and linear RNNs limits scala-
bility, particularly on resource-constrained platforms. Addi-
tionally, depth-guided attention mechanisms, recently applied
in monocular 3D object detection such as MonoDGAE [2]
integrate geometric priors and bilateral filtering to enhance
robustness, yet still encounter computational bottlenecks in
large-scale 3D perception tasks.

Recent efforts to improve efficiency have focused on re-
designing 3D detection backbones. Transformer-based ap-
proaches, such as DSVT [3], leverage windowed or sparse
attention to boost accuracy but remain hindered by the high
latency of quadratic complexity. The LION [4] framework
adopts linear group RNNs to deliver state-of-the-art results
on benchmarks like Waymo, nuScenes, and KITTI, yet its se-
quential processing limits parallelization and increases training
overhead. Alternatively, MLP-based architectures, exemplified
by MLP-Mixer [5], have achieved competitive performance
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Fig. 1. The MLP-based operator: each voxel window is sequentially par-
titioned along the X and Y axes, with an MLP module applied after each
partition. The MLP module consists of two linear layers with a GELU
activation, residual connection, and LayerNorm.

in vision tasks without relying on convolution or attention,
inspiring the pursuit of lightweight MLP solutions for 3D
perception.

We propose a lightweight MLP-based operator for voxel-
based 3D object detection that replaces 3D convolutions,
attention, and linear group RNNs. Integrated into a sparse
hierarchical backbone, it enables fast, geometry-aware feature
learning with an optimal balance of accuracy and efficiency.

II. METHOD

The proposed MLP-based operator is designed as a
lightweight alternative to conventional 3D convolutions, at-
tention mechanisms, and linear group RNNs in voxel-based
3D object detection. Its architecture emphasizes parallelizable
spatial modeling while preserving geometric awareness.

Given a sparse voxel tensor X ∈ RN×C , where N is the
number of non-empty voxels and C is the feature dimension,
the input is first divided into fixed-size voxel windows. Each
window is processed sequentially along two orthogonal spatial
axes to capture directional context. The process begins with an
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Fig. 2. Comparison of detection results in BEV for the same scene: (a) - MLP-based operator, (b) - Mamba-based operator. Green boxes denote ground
truth, red boxes denote predictions, with arrow direction indicating estimated heading.

TABLE I
COMPARISON OF AP3D , APBEV , APbbox , AND APaos ON THE KITTI VALIDATION SET (AP R40) FOR CAR, PEDESTRIAN, AND CYCLIST CLASSES.

Class Method AP3D APBEV APbbox APaos

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Car (IoU=0.7) Mamba-based 87.44 78.60 75.99 91.18 87.63 86.95 95.72 93.71 91.47 95.70 93.58 91.26
MLP-based (Ours) 87.02 77.74 75.12 91.01 87.27 86.51 95.44 91.91 90.97 95.43 91.76 90.72

Pedestrian (IoU=0.5) Mamba-based 63.53 57.28 51.21 69.07 62.87 57.64 78.44 74.05 69.87 73.56 68.26 64.02
MLP-based (Ours) 63.44 55.57 49.56 67.93 60.54 55.05 78.33 72.99 68.59 73.22 67.30 62.87

Cyclist (IoU=0.5) Mamba-based 82.35 65.24 61.11 86.41 70.15 66.04 91.15 74.70 71.54 90.93 73.55 70.48
MLP-based (Ours) 84.16 66.18 62.10 88.99 70.59 66.22 91.71 73.72 70.63 91.50 73.13 69.99

X-axis partition, grouping features along the forward direction,
followed by an MLP module to model intra-axis dependencies.
The resulting features are then partitioned along the Y-axis to
aggregate lateral context, after which a second MLP module
is applied.

As illustrated in Fig. 1, each MLP module applies a Linear
layer, GELU activation, and another Linear layer, adds the
result to the original input via a residual connection, and
uses Layer Normalization for training stability. Formally, the
transformation is expressed as

Fmlp = LayerNorm (X + Linear (GELU (Linear(X)))) (1)

The MLP-based operator replaces heavier layers in a sparse
voxel backbone, using windowed feed-forward processing to
expand the receptive field efficiently. This design preserves
geometric cues, reduces latency, and maintains competitive
detection performance.

III. RESULTS AND DISCUSSION

Table I and Fig. 2 compare the proposed MLP-based op-
erator with the Mamba-based baseline on KITTI (AP R40).
Across all classes and IoU thresholds, the MLP-based design
matches the baseline within ≈1% for most AP3D, APBEV ,
APbbox, and APaos scores.

For Cars at IoU=0.7, AP3D is 87.02%/77.74%/75.12%
(Easy/Mod./Hard), with similar trends across other metrics.
Pedestrian and Cyclist results show minor drops in some set-
tings but also gains, e.g., Cyclist APBEV at IoU=0.5 improves
by +2.58%.

BEV visualizations show both methods yield similarly ac-
curate boxes and orientations, confirming that the lightweight
MLP blocks maintain accuracy while greatly reducing training
and inference time for real-time 3D detection.

IV. CONCLUSION

We presented a lightweight MLP-based operator for voxel-
based 3D object detection that replaces computationally ex-
pensive 3D convolutions, attention and sequential modules
with parallelizable feed-forward blocks. Integrated into a
sparse hierarchical backbone, the operator achieves accuracy
comparable to a Mamba-based baseline on the KITTI bench-
mark while significantly reducing training and inference time.
These results highlight its potential as an efficient backbone
component for real-time autonomous driving systems. Future
work will explore integrating gating mechanisms into the
MLP-based operator for adaptive computation, scaling to
larger datasets, and extending to multi-modal 3D perception.
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