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Abstract—We propose an optimization algorithm for split fed-
erated learning (SFL) that jointly optimizes the model split point,
aggregation interval, and uplink transmit power to minimize total
training latency for ensuring convergence accuracy. On CIFAR-
10 with VGG16, our approach achieves the lowest convergence
latency compared to baseline methods, highlighting that the
proposed method improves both convergence speed and energy
efficiency for the SFL framework, validating its practicality for
resource-constrained mobile edge computing (MEC) networks.

Index Terms—Split federated learning, mobile edge computing.

I. INTRODUCTION

As learning models grow larger and more complex, training
them on resource-constrained edge devices (EDs) has become
increasingly challenging. Federated learning (FL) is a de-
centralized framework where participating EDs train models
locally on their data, and the edge server (ES) aggregates the
model parameters transmitted by EDs to construct the global
model [1]. Split learning (SL) alleviates the computational
burden on EDs by partitioning the model between the EDs
and ES, but its sequential training procedure across EDs incurs
excessive training latency [2]. To address these limitations,
Split federated learning (SFL) combines FL and SL, enabling
parallel training across EDs while reducing computation on
EDs by partitioning the model [3]. In SFL, the aggregation
interval mainly affects the communication overhead and the
convergence rate. In addition, the model split point influences
not only the communication and computational overheads but
also the convergence rate of training. Therefore, we develop
an optimization algorithm for SFL, which jointly determines
the model split point, the aggregation interval, and the uplink
transmit power to minimize the total training latency while
ensuring the training accuracy in resource-constrained model
edge computing (MEC) networks.

II. SYSTEM MODEL

We consider a typical SFL framework [4] in MEC networks,
consisting of ED set N ≜ {1, 2, ..., N} and a ES. Each
ED operates in parallel and is responsible for executing the
forward propagation (FP) with a computing latency TF

i =
bΦF

c,i(µ)

fd
, where ΦF

c,i(µ) =
∑L

j=1 µi,jρj . Here, ρj denotes the
FP computing workload of the propagating jth layer, fd is
the computing capability of ED and b is the mini batch size.
Similarly, the backward propagation (BP) is performed with
a computing latency of TB

i =
bΦB

c,i(µ)

fd
, where ΦB

c,i(µ) =

∑L
j=1 µi,jϖj with ϖj denoting the computing workload of

ED.
At the ES, FP is performed upon receiving activation data

from the participating EDs, with a computing latency given by
TF
s =

bΦF
s (µ)
fs

, where ΦF
s (µ) =

∑N
i=1

∑L
j=1 µi,j (ρL − ρj)

with fs denoting the computing capability of ES. Simi-
larly, BP is performed with a computing latency of TB

s =
bΦB

s (µ)
fs

, where ΦB
s (µ) =

∑N
i=1

∑L
j=1 µi,j (ϖL −ϖj).

After completing FP at the ED, the cut-layer model
parameters are transmitted with an uplink communica-
tion latency given by TU

a,i =
bΓa,i(µ)

RU
i (pU

a,i)
where Γa,i(µ) =

∑L
j=1 µi,jψj . The uplink channel rate RU

i is defined as RU
i =

WU

N log2

(
1 +

pU
a,id

−ν |h1|2
WU
N N0

)
. Meanwhile, at the ES, after com-

pleting BP, the model parameters are delivered with a downlink
communication latency of TD

g,i =
bΓg,i(µ)

RD
i

where Γg,i(µ) =∑L
j=1 µi,jχj . The downlink channel rate RD is given by

RD = WD

N log2

(
1 + psd

−ν |h2|2
WD
N N0

)
. Here, WU and WD denote

the uplink and downlink channel bandwidths, respectively. pa,
and ps are the transmit power of ED and ES. d is for distance
from ED to ES, v is a path loss exponent, and N0 is for noise
power spectral density. Moreover, the uplink and downlink
channel fading coefficients are denoted by h1 and h2.

After I training rounds, the locally trained models are si-
multaneously offloaded from the EDs to the ES with an uplink
latency TU

m,i =
Λm,i(µ)

RU
i (pU

m,i)
, where Λm,i(µ) =

∑L
j=1 µi,jδj , and

δj denotes the model data size at ED when the cut layer is at
layer j. Subsequently, the EDs receive the aggregated model
from the ES with a downlink latency TD

m,i =
Λm,i(µ)

RD
i

.

III. PROBLEM FORMULATION

We jointly optimize the split point µ ≜ {µi,j , ∀i ∈ N , ∀j ∈
L}, the aggregation interval I , the uplink transmit power
pU ≜ {pUa,i, pUm,i, ∀i ∈ N}, and the uplink latency TU ≜
{TU

a,i, T
U
m,i, ∀i ∈ N} to minimize the total training latency.

The total training latency is given by M · f(I,µ,pU ,TU ) ≜
M · [I(maxi{TF

i + TU
a,i}+ TF

s + TB
s +maxi{TD

g,i + TB
i }) +

maxi{TU
m,i}+maxi{TD

m,i}] where M ≜ R
I denotes the num-

ber of communication rounds required to reach convergence.
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The resulting optimization problem is formulated as

(P1) : minimize
I,µ,pU ,TU

M · f
(
I,µ,pU ,TU

)

s.t.
1

R

R∑
t=1

E
[∥∥∇wf(wt−1)

∥∥2] ≤ ϵ, (1a)

µi,j ∈ {0, 1}, ∀i ∈ N , j ∈ L, (1b)∑
j∈L

µi,j = 1, ∀i ∈ N , (1c)

I ∈ N+, (1d)

0 ≤ pUa,i ≤ pmax and 0 ≤ pUm,i ≤ pmax, ∀i ∈ N
(1e)

where (1a) guarantees the global convergence accuracy. (P1)
is a mixed-integer nonlinear problem, for which obtaining an
optimal solution in polynomial time is infeasible.

IV. PROPOSED OPTIMIZATION SCHEME

In this section, we propose an efficient iterative optimization
algorithm for (P1). First, following [4], we reformulate the
expression of M in accordance with the convergence accu-
racy of (1a). Second, noting the one-to-one correspondence
between the uplink transmit powers {pUa,i, pUm,i} and the uplink
transmission latencies {TU

a,i, T
U
m,i}, we replace the uplink

transmit power variables with their time equivalents. Third,
to handle the max functions in the objective of (P1), we
introduce the auxiliary variables T ≜ [T1, T2, T3, T4, T5] and
use an epigraph reformulation to move the max functions into
constraints. Therefore, (P1) can be reformulated as

(P2) : minimize
I,µ,TU ,T

Θ(I,µ,T )

s.t. (1b), (1c), (1d),
bΓa,i(µ)

RU
i (pmax)

≤ TU
a,i, ∀i ∈ N , (2a)

Λc,i(µ)

RU
i (pmax)

≤ TU
m,i, ∀i ∈ N , (2b)

L∑
j=1

(
µi,j

j∑
k=1

G2
k

)
≤ T1, ∀i ∈ N , (2c)

TF
i + TU

a,i ≤ T2, ∀i ∈ N , (2d)

TD
g,i + TB

i ≤ T3, ∀i ∈ N , (2e)

TU
m,i ≤ T4, ∀i ∈ N , (2f)

TD
m,i ≤ T5, ∀i ∈ N . (2g)

where Θ(I,µ,T ) ≜
2ϑ{I(T2+TF

s +TB
s +T3)+T4+T5}

γI(ε− βγ
N

∑L
j=1 σ2

j−4β2γ2I2T1)
.

To solve (P2) efficiently, we decompose it into three sub-
problems and alternately solve each while keeping the others
fixed until convergence. First, to determine TU , we formulate
and solve a convex problem that minimizes the squared
deviation from their prior values. Second, to determine I , we
solve the subproblem of (P2) via the Newton-Raphson method.
Third, to determine µ and T , the subproblem of (P2) is solved
by using the Dinkelbach algorithm, where µ and T are jointly
optimized.
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(b) Energy consumed over the total
training latency.

Fig. 1. Training performance and total transmit energy consumption for
CIFAR-10 datasets using VGG-16.

V. SIMULATION RESULTS

We evaluate the proposed optimization method on the
CIFAR-10 dataset using the VGG16 model distributed across
5 EDs. Simulation parameters follow [4]. For performance
comparison, we consider baselines where the split point of
all EDs is fixed at the first layer, fixed at the 15th layer, and
randomly assigned. Under the proposed optimization method,
the split points of all EDs are distributed between the 9th and
11th layers. Fig. 1(a) presents the proposed method reaches
high accuracy much earlier than all baselines, exhibiting a
clearly faster convergence rate throughout training. Fig. 1(b)
reports the total transmit energy consumption over reaching
convergence. The proposed method yields substantially lower
energy than fixed or random split configurations. Overall,
the results demonstrate that the proposed method improves
both convergence speed and energy efficiency for the SFL
framework.

VI. CONCLUSIONS

In this paper, we propose an optimization algorithm for the
SFL framework, which jointly determines the split point of
the model, the aggregation interval, and the uplink transmit
power to minimize the total training latency while ensuring
the accuracy of the training in resource-constrained MEC
networks. Our convergence-aware total training latency op-
timization algorithm significantly reduces end-to-end training
latency while guaranteeing target accuracy.
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