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Abstract—To further improve the accuracy of channel esti-
mation in multiple-input multiple-output orthogonal frequency-
division multiplexing (MIMO-OFDM) systems, we study deep-
learning (DL)-based channel denoising. We train a denois-
ing neural network offline on simulated realizations from a
single baseline channel scenario and evaluate the pre-trained
model—without adaptation—across multiple online deployment
environments. When the deployment environment aligns with
the training scenario, the denoiser provides the strongest gains;
however, under distribution shift (e.g., differing delay/Doppler
characteristics or signal-to-noise ratio regimes), estimation ac-
curacy degrades, revealing limited cross-scenario generalization.
These findings highlight the sensitivity of DL-based denoising to
channel mismatch and motivate further investigation into online
robustness to sustain performance in dynamic wireless settings.

I. INTRODUCTION

Accurate channel estimation plays a crucial role in multiple-
input multiple-output orthogonal frequency-division multiplex-
ing (MIMO-OFDM) systems, as reliable channel state infor-
mation at the receiver directly impacts both reliability and
spectral [1]. In practical systems, pilot-aided estimation is
performed using demodulation reference signals (DM-RSs)
sparsely embedded in the time—frequency resource grid [2].
Linear estimators such as least squares (LS) is applied at DM-
RS positions, followed by linear interpolation to reconstruct the
full channel response. However, due to the limited pilot density
and measurement noise, these estimates can be noticeably
inaccurate.

To mitigate this issue, channel denoising is employed as
a post-processing step that refines pilot and interpolation-
based estimates by suppressing noise. Recently, deep learning
(DL)-based denoising approaches have shown strong potential.
Neural networks can learn mappings from noisy to clean
channel estimates using large simulated datasets without ex-
plicit statistical modeling. Motivated by the two-dimensional
time-frequency structure of the channel, many studies treat
the channel estimate as an image and apply convolutional
architectures. Representative designs include complex-valued
residual denoisers and two-stage models that combine super-
resolution with denoising [3], [4].
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Most existing DL-based denoisers are trained offline on
simulated or pre-collected data and then deployed without
adaptation. We therefore examine how well pre-trained models
retain performance when deployment conditions diverge from
those seen in training. In this work, we train a denoising
neural network offline on a specific baseline channel scenario
and evaluate the fixed model without online adaptation across
multiple deployment environments. The denoiser performs best
when deployment matches training. Under distribution shift,
such as changes in delay and Doppler statistics or other channel
characteristics, accuracy degrades, indicating limited cross-
scenario generalization.

Our experiments provide an empirical characterization of
channel-mismatch sensitivity and clarify the limitations of
offline-only training for DL-based channel denoising. The
results point to a need for robustness mechanisms during
deployment to maintain performance under nonstationary chan-
nels.

II. SYSTEM MODEL

We consider a MIMO-OFDM system with N, transmit
antennas, N, receive antennas, and K subcarriers. Let (n, k)
index the OFDM symbol and subcarrier, which together define
a resource element (RE). The RE grid is partitioned into a
pilot set Z,, that carries DM-RS and a data set Z, that carries
user symbols. The two sets need not be disjoint. At REs in
7, \ Zq a known pilot vector x,[n, k] € CN* is transmitted. At
REs in Z; \ Z, a data vector x4[n, k] € X™t is transmitted,
where X denotes the modulation constellation. Symbols are
normalized per transmit antenna so that E[|z,;[n,k]|?] =
E[|za:[n, k]|?] = 1 fori=1,..., N;. Then, the received signal
is given by

yin, k] = Hn, k]x[n, k] + v[n, k], €))

where H[n,k] € CY-*Nt denotes the channel frequency
response (CFR) and v[n, k] ~ CN(0,0°Iy,) denotes additive
noise. Measurements on pilot REs are used to estimate H[n, k]
and data REs are demodulated using the channel estimate

Hin, k].
III. DL-BASED CHANNEL DENOISING

We adopt a DL-based channel denoising approach to mit-
igate errors in pilot-aided channel estimation. The key idea
is to view the CFR over the time-frequency plane as a two-
dimensional image and to apply a denoising neural network
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to recover a cleaner CFR. To control computational cost, the
denoiser operates only on a subsampled CFR grid defined by
the DM-RS positions, forming an M; x M sub-grid of OFDM
symbols and subcarriers.

For each transmit-receive antenna pair (r,t), let M"Y ¢
CMexM; denote the true sub-CFR on this grid and let M(™) ¢
CM:xM; be jts noisy estimate obtained from pilot-aided chan-
nel estimation. A denoising network fpy(-;#) maps the noisy
input to the denoised output

M"Y = fp,(MT;0). 2)

Complex-valued inputs may be processed by stacking real and
imaginary parts as separate channels, the formulation does not
depend on any specific network architecture. The denoised sub-
grid is then expanded to the full time-frequency grid using
standard two-dimensional interpolation.

Most existing DL-based denoisers are trained offline on
datasets intended to represent deployment conditions and are
subsequently used for inference without adaptation. Because
wireless channels are inherently dynamic, test conditions are
difficult to anticipate. Consequently, pre-trained models often
exhibit performance degradation under distribution mismatch
or out-of-distribution scenarios between training and deploy-
ment. Therefore, adaptation during deployment is necessary to
maintain denoising performance under distribution shift.

IV. SIMULATION RESULTS

We evaluate a MIMO-OFDM system at a carrier frequency
of 3.5 GHz with a subcarrier spacing of 15kHz and K = 512
subcarriers serving four users. Each slot comprises 14 OFDM
symbols, and each resource block spans 12 adjacent subcar-
riers. Modulation is 4-quadrature amplitude modulation. The
antenna configuration is /Ny = 2 transmit and N,, = 16 receive,
and low-density parity check code with rate 1/2 is applied. LS
channel estimation and linear two-dimensional interpolation are
applied.

For channel denoising, we use a denoising convolutional
neural network (DnCNN) proposed in [5] model trained offline
and kept fixed at test time (no online adaptation). This archi-
tecture is trained to learn a residual mapping R(l\A/I(’"’t); 0) that
estimates the noise component in the input. To this end, we
define the loss function following the formulation

][

where H . HF denotes Frobenious norm. A total of Ny = 4
slots are processed, all for inference. The network input win-
dow is (M, My) = (8,58), corresponding to the numbers of
OFDM symbols and subcarriers in each sub-CFR grid.

Fig. 1 plots frame error rate (FER) versus signal-to-noise
ratio (SNR) for a denoiser trained offline on clustered delay line
(CDL)-B with a 300 ns delay spread and 30 km/h mobility, then
evaluated without adaptation across multiple test environments.
The matched condition (CDL-B, 300ns, 30 km/h) attains the
lowest FER and the steepest decay with SNR. In contrast,
mismatched channel models (CDL-A/C/D/E) yield noticeably

O(M,M;0) = |[R(M;6) — (M - M
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Fig. 1. FER comparison under various channel environments.

higher FER across SNR, with some curves exhibiting clear
error floors indicative of severe distribution shift. Even within
the same model family, changes in delay spread or user
speed reduce performance. For example, CDL-B with 100ns
delay spread and 60 km/h performs worse than the matched
baseline. Overall, the results show sensitivity to channel and
mobility mismatch and limited cross-scenario generalization of
the offline-trained denoiser.

V. CONCLUSION

This paper examined DL-based channel denoising for
MIMO-OFDM when a denoiser trained offline on a specific
baseline scenario is deployed without adaptation in diverse
environments. We applied DnCNN on DM-RS subgrids and
evaluated performance across multiple channel models, delay
spreads, and user speeds. The results showed a consistent
pattern. Performance was strongest when deployment con-
ditions matched training. Under distribution shift, including
changes within the same model family, FER increased and
error floors appeared. These outcomes indicate limited cross-
scenario generalization and high sensitivity to channel and
mobility mismatch. Although the absolute figures depend on
the chosen system configuration, the trend remained stable
across the tested settings.

Future work will examine approaches that improve robust-
ness at deployment, including broader training distributions and
online adaptation designed to sustain denoising performance
under nonstationary channels.
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