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Abstract—Mobile devices face a persistent conflict between
the growing memory demands of sophisticated applications and
their limited physical DRAM. This conflict leads to aggressive
process terminations by the Low Memory Killer (LMK), which
degrades the multitasking user experience. While prior object-
level swapping frameworks like Marvin and Fleet have sought to
address this by optimizing for single performance vectors, such
as reclamation speed or hot-launch latency, they might exhibit
performance cliffs under complex, unpredictable workloads.

This paper introduces PhantomSwap, a hybrid memory swap-
ping system designed to deliver a more holistic improvement in
system fluidity and resilience. Its core innovation is a reactive,
three-tiered memory hierarchy (DRAM, ZRAM, Flash) managed
by an intelligent Unified Swap Controller using a lightweight
Object Aging Algorithm. This architecture is deeply co-designed
with the Android Runtime’s Garbage Collector, employing a
Bookmark-style mechanism to ensure memory correctness with-
out expensive fault-ins.

Our evaluation demonstrates the effectiveness of this ap-
proach. Experimental results show that PhantomSwap signif-
icantly increases application cache capacity, supporting up to
19 concurrent commercial applications compared to 15 in the
Android baseline. Critically, while maintaining highly competitive
median hot-launch performance, PhantomSwap exhibits superior
tail latency, reducing the 95th-percentile launch time by up
to 46% against state-of-the-art frameworks in complex gaming
workloads. The ZRAM tier acts as a crucial buffer, "softening"
the performance penalty of memory misses and preventing the
severe stalls inherent in two-tiered systems.

Index Terms—Memory Management, Mobile Devices, Operat-
ing Systems

I. INTRODUCTION

In today’s digital era, mobile devices have become in-
dispensable. This ubiquity stems from a rich ecosystem of
sophisticated applications, which have become increasingly
memory-intensive. Many popular social media, gaming, and
productivity apps each consume several hundred megabytes of
RAM, with some exceeding a gigabyte [1]. This trend places
significant strain on the limited DRAM resources of mobile
platforms.

The disparity between these soaring app memory demands
and fixed physical memory often leads to frustrating user
experiences [2]. For example, a user navigating with a map app
might switch to reply to a message, only to find upon return
that the map app was terminated by Android’s Low Memory
Killer (LMK) [3] and must be slowly reloaded. Similarly,

gamers may find their game state lost after pausing to check
an online guide. These issues stem from the LMK aggressively
terminating background processes to free memory.

To address this challenge, prior object-level swapping
frameworks like Marvin [4] and Fleet [5] have been pro-
posed. While the object-level paradigm offers significant ad-
vantages over traditional page-based swapping, as summarized
in Table I, existing frameworks tend to focus on a single
performance vector, such as reclamation speed or hot-launch
latency, and can exhibit performance cliffs under complex,
unpredictable workloads.

TABLE I: Comparison of Swapping Approaches

Approach Granularity Strength Weakness

Traditional Page-level Simplicity &
OS-level
transparency

Not object-aware,
causes I/O
amplification

Object-level Object-level Fine-grained control
&
runtime-awareness

High complexity &
runtime overhead

In light of these limitations, we introduce PhantomSwap, a
novel framework that adopts a reactive philosophy to deliver
a more holistic improvement in system fluidity. Rather than
attempting to predict future accesses, PhantomSwap reacts to
observed access patterns. Its core innovation is a three-tier
memory hierarchy (DRAM, ZRAM, Flash) [6] that extends
prior two-tier models by adding a fast, in-memory compression
tier, which provides for more nuanced placement decisions.

The key contributions of this work are as follows:

• A Reactive Three-Tiered Architecture: A system ar-
chitecture built around a reactive philosophy and a three-
tier memory hierarchy that optimizes for overall system
fluidity and ensures graceful performance degradation.

• Increased Application Cache Capacity: By leveraging
the intermediate ZRAM tier, PhantomSwap significantly
increases the number of applications the system can keep
readily available compared to two-tier systems.

• Efficient Object Aging and GC Integration: We de-
veloped an "Object Aging Algorithm" and integrated a
robust bookmarking mechanism into the garbage collector
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to maintain memory correctness without incurring expen-
sive fault-ins.

II. RELATED WORK

A fundamental limitation of traditional page-based swap-
ping in a managed runtime such as Android is the conflict
with Garbage Collector (GC) [7]. A standard GC cycle must
traverse the entire live object graph, inevitably touching ob-
jects on swapped-out pages. This triggers a “swap-in storm”:
a cascade of page faults that forces pages back into DRAM
merely to satisfy the GC’s traversal, not for application use.
This phenomenon severely undermines the effectiveness of
swapping and can paradoxically increase memory pressure,
accelerating LMK interventions [5]. Mitigating this GC-swap
conflict is a primary motivation for the object-aware frame-
works discussed next.

Recognizing this problem, researchers have proposed
object-level swapping frameworks. Marvin [4] proactively
checkpoints infrequently accessed (“cold”) objects to flash
storage before memory becomes critical. This predictive, two-
tier (DRAM/Flash) approach enables rapid memory reclama-
tion. In contrast, Fleet [5] focuses on improving app launch
latency by differentiating between foreground and background
object allocations, preferentially swapping out background
objects in a reactive, two-tier manner. While effective, both
frameworks optimize for a single performance vector and can
exhibit performance cliffs, which motivates our holistic three-
tiered approach.

III. PHANTOMSWAP DESIGN

A. Overview

PhantomSwap adopts a modular, three-layered architecture,
as illustrated in Figure 1. This design clearly separates the
system’s concerns:

• The Policy Layer (the “brain”): Makes high-level strate-
gic decisions about which objects to swap and when.

• The Execution Layer (the “muscle”): Performs the low-
level swapping operations, interacting with the kernel and
the Java heap.

• The Coordination Layer (the “nervous system”): En-
sures correctness and robustness by integrating with the
GC and managing concurrency.

Policy Layer

Coordination Layer

Execution Layer

Unified Swap
Controller

Object Swap
Handler

Swap Router

GC Integration
Object

Access Data

Swapped-Out
Metadata

Forwarding
Table

Modified
ART

Read Barrier

Update
Reclaim

Swap
Commands

Fault Trigger

Object Data & Handle

Android Runtime Kernel

Fig. 1: The architecture of the PhantomSwap framework.

B. The Policy Layer: Unified Swap Controller

The Policy Layer is driven by the Unified Swap Controller,
which employs a nuanced temperature-based model. To track
object temperature, we developed the Object Aging Algo-
rithm, a lightweight, lock-free mechanism whose workflow
is shown in Figure 2. It uses thread-local buffers to record
object accesses without introducing contention. During a GC
safepoint, a dedicated “Aging Pass” processes these records:
an object’s age counter is reset to zero if recently accessed, or
incremented otherwise.

Aging Pass Begin
(GC Safepoint)

Aggregate
Access Data

Is Object Accessed
Recently?

Reset Age to 0

Increase Age
(+)

Aging Pass
Complete

Yes

No

For each tracked object

Fig. 2: The workflow of the Object Aging Algorithm.

This age score directly informs our Multi-Tiered Swapping
Policy, illustrated in Figure 3. The controller uses configurable
age thresholds to map an object to the appropriate memory
tier:

• Hot Objects (low age) are retained in DRAM.
• Warm Objects (medium age) are compressed and mi-

grated to the ZRAM tier.
• Cold Objects (high age) are evicted to Flash storage.

The controller also dynamically manages ZRAM capacity,
migrating the coldest objects from ZRAM to Flash when
pressure is high.

To ensure system stability and efficiency, the controller
performs two additional functions. First, it applies candidate
filtering to exclude certain objects from swapping, such as
VM-internal objects, objects with native resources, and those
smaller than a 2KB threshold. Second, it provides dynamic
resource management by continuously monitoring ZRAM
usage. When ZRAM occupancy exceeds a high-water mark,
the controller proactively migrates the coldest objects from
ZRAM to Flash, ensuring that space remains available for
newly identified warm objects.

C. The Execution Layer: Swapping and Fault-Handling

The Execution Layer performs the low-level mechanics of
moving objects between memory tiers. The swap-out process,
initiated by the Object Swap Handler, replaces a target
object on the heap with a minimal, content-free placeholder,
termed the Phantom Stub. It then registers the object’s state
and metadata, including a CRC32 [8] checksum for integrity,
in the g_swapped_info map. The fault-in process is sub-
sequently triggered when the Modified ART Read Barrier
intercepts an application’s attempt to access a Phantom
Stub.
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Fig. 3: The Multi-Tiered Swapping Policy dictates object
placement based on age.

Upon a fault, the Relocatable Swap-In mechanism, illus-
trated in Figure 4, is invoked. This process is “relocatable”
because it restores the object to a new memory location,
a critical feature for enabling true memory reclamation. A
forwarding pointer is installed in the g_forwarding_map
to redirect subsequent accesses. The object’s SwappedInfo
entry then acts as a temporary “tombstone” to guarantee
consistency. Data integrity is ensured by re-calculating and
verifying the CRC32 checksum during restoration.

Fault-In
Triggered

Set State to
"SWAPPING_IN"

Is another thread
swapping-in this

object?

No

Wait object
swapping-in

Checksum
Error

Allocate
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Install
Forwarding

Pointer

Verify CRC32
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Log Error
&

Return Null

Yes

Checksum
OK

Set State to
"SWAPPED_IN"

Return
New Address

Retrieve
Forwarded
Address

Fig. 4: The workflow of the Relocatable Swap-In mechanism,
detailing the synchronization and restoration process.

D. The Coordination Layer: GC Integration

The Coordination Layer’s primary role is to ensure system-
wide correctness and robustness. Its most critical function is
to solve the GC-swap conflict. To prevent the phenomenon
of “swap-in storm”, PhantomSwap implements a bookmark-
style GC integration. When the GC’s traversal encounters
a Phantom Stub, it retrieves the object’s pre-saved list of
references from its metadata entry in g_swapped_info and
pushes them onto the mark stack. This approach preserves
object reachability without incurring expensive fault-ins and
allows the GC to correctly reclaim the storage of any swapped-
out objects that have become garbage.

Furthermore, this layer guarantees robustness through well-
defined protocols. Concurrency control for fault-in operations
is managed by a fine-grained, per-object locking mechanism
utilizing a mutex and a condition variable. To prevent race
conditions during the swap-out phase, all such operations are
performed atomically at an ART safepoint, where application
threads are safely paused.

E. Implementation Overview

Our implementation follows a modular design, separating
core logic into new self-contained modules and integrating
them into the system via targeted hooks. This strategy, which
ensures high cohesion and low coupling, is summarized in
Table II.

TABLE II: Overview of PhantomSwap Implementation

Category Component Implementation
Summary

New Self-Contained
Modules

Unified Swap Controller New C++ module
to implement the
aging algorithm
and make swap
policy decisions.

Object Swap Handler New C++ module
to execute I/O
operations and
manage object
forwarding.

Kernel Swap Router New kernel driver
to process ‘ioctl‘
calls from ART for
storage operations.

Targeted System
Modifications

ART Read Barrier Hooked to
intercept memory
reads and trigger
the fault-in
process.

ART Garbage Collector Hooked into the
GC lifecycle for
object aging,
bookmark-style
marking, and
cleanup.

2127



IV. EVALUATION

A. Experimental Setup

Our evaluation was conducted on a Google Pixel 3 with
4GB of RAM, running a modified Android 10 build. This
environment was chosen to ensure a direct and rigorous
comparison with the state-of-the-art Fleet framework [5].
We compare PhantomSwap against three baselines: the stock
Android 10 with ZRAM, and our re-implementations of
Marvin [4] and Fleet [5]. Our aging thresholds were set to
THRESHOLD_WARM=10 and THRESHOLD_COLD=30 based
on a preliminary sensitivity analysis (detailed in subsubsec-
tion IV-B5). We used both synthetic micro-benchmarks and
a macro-benchmark suite of 20 popular commercial applica-
tions, listed in Table III, to evaluate the system.

TABLE III: The Commercial Applications for Macro-
benchmarks

App Type App Description

Communication Twitter (X), Facebook, Instagram, Telegram, Line

Multimedia YouTube, TikTok, Spotify, Twitch, Rave, BigoLive

Tools & Utilities Amazon Shopping, Google Maps, Chrome, Firefox,
LinkedIn, Gmail

Games Angry Birds Classic, Candy Crush Saga, PUBG Mobile

B. Results

1) Application Cache Capacity: We first measure the Ap-
plication Cache Capacity, the number of apps that can remain
active in the background. The detailed results across various
workloads are presented in Figure 5.
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Fig. 5: Application Cache Capacity results across different
workloads.

The synthetic large object workload (Figure 5a) shows
that PhantomSwap achieves the most stable capacity, while
the small object test (Figure 5b) validates our design trade-
off of ignoring small objects to avoid excessive overhead.
Most critically, in realistic commercial application workloads
(Figure 5c), PhantomSwap demonstrates clear superiority.

The summary of maximum cache capacity is presented
in Figure 6. In the extended commercial test, PhantomSwap
supports up to 19 concurrent apps, a 26% increase over the
stock Android system (15 apps) and also surpasses Fleet (17
apps). This advantage arises from our intermediate ZRAM tier,
which efficiently handles the “warm” objects typical in real-
world multitasking scenarios.
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Fig. 6: Maximum application cache capacity across key work-
loads.

2) Application Hot-Launch Performance: Next, we eval-
uate hot-launch latency. The full performance distribution,
presented as a Cumulative Distribution Function (CDF) in
Figure 7, reveals the nuanced behavior between the frame-
works. For applications with simple and highly predictable
hot-launch working sets, such as Firefox, both PhantomSwap
and Fleet deliver exceptional, near-identical performance, with
their CDF curves being extremely steep and closely aligned.
However, the difference in design philosophy becomes most
apparent in more complex, hard-to-predict workloads like
Facebook and Angry Birds. In these cases, all frameworks
exhibit a performance tail, but PhantomSwap’s degradation is
substantially more graceful. This indicates that while some
critical objects are inevitably swapped out under heavy mem-
ory pressure, PhantomSwap manages these scenarios more
effectively.

To quantify the worst-case user experience, we focus on
the 95th-percentile (P95) tail latency, summarized in Figure 8.
The chart highlights that PhantomSwap delivers superior tail
latency across all applications. In the complex Angry Birds
workload, PhantomSwap reduces P95 latency by 46% com-
pared to Fleet (512ms vs. 948ms). This demonstrates the
effectiveness of the ZRAM tier as a “performance safety net”
that softens the penalty of memory misses when a policy
decision is imperfect.
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Fig. 7: CDF of hot-launch times for four representative com-
mercial applications under high memory pressure. A curve
further to the left indicates better performance.
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Fig. 8: Tail (P95) hot-launch latency comparison, indicating
worst-case performance.

3) Runtime Fluidity: To ensure our background mecha-
nisms do not degrade the foreground user experience, For
measuring runtime fluidity, we used the Perfetto [9] tool to
trace Jank Ratio [10] (lower is better) and average Frames
Per Second (FPS, higher is better). As shown in Figure 9,
PhantomSwap’s impact on runtime fluidity is minimal. Com-
pared to the Android baseline and Fleet, PhantomSwap shows
a slight increase in Jank Ratio of about 1% and a decrease in
average FPS of 2-4 frames across most applications. However,
its performance in both metrics is consistently better than
Marvin’s. This critical result indicates that the substantial gains
in application cache capacity are achieved with only a marginal
and acceptable overhead on the interactive performance of the
foreground application.

4) System Overheads: Finally, we measured the system
costs. PhantomSwap introduces a modest CPU overhead of
approximately 1.27% compared to the Android baseline and
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Fig. 9: Runtime fluidity comparison across representative
applications. The left chart shows the Jank Ratio, and the right
chart shows the average FPS.

requires 65-100 MB of DRAM for its metadata. We conclude
that these costs represent a favorable trade-off for the signifi-
cant gains in system capacity and resilience.

5) Parameter Sensitivity Analysis: The aging thresh-
olds used in our experiments, THRESHOLD_WARM=10 and
THRESHOLD_COLD=30, were determined through a pre-
liminary sensitivity analysis. Our tuning revealed a clear
trade-off: setting THRESHOLD_WARM too low (e.g., < 5)
resulted in aggressive swapping of temporarily idle ob-
jects, harming hot-launch latency, while setting it too high
(e.g., > 20) was too conservative, reducing cache capac-
ity. Similarly, a THRESHOLD_COLD value set too close to
THRESHOLD_WARM (e.g., 15) caused premature eviction to
Flash, negating the benefit of the ZRAM buffer. Therefore,
the chosen values represent a balanced trade-off for our target
device.

V. DISCUSSION

Our experimental evaluation confirms that PhantomSwap
achieves its primary goal of enhancing system resilience. The
framework substantially increases application cache capacity
and, most critically, demonstrates superior tail latency on
complex workloads, all while maintaining system fluidity
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and incurring only modest overhead. This confirms that our
approach provides a more holistic performance improvement
compared to prior work, which often optimizes for a single
performance vector at the expense of others.

The key to PhantomSwap’s success lies in its three-tiered
memory hierarchy. The intermediate ZRAM layer acts as a
crucial “performance safety net,” a feature absent in two-tiered
(DRAM/Flash) systems like Marvin and Fleet. When a policy
inevitably makes a mistake (e.g., misclassifying a required
object), two-tiered systems pay a severe penalty due to high-
latency Flash I/O. PhantomSwap’s ZRAM tier effectively
“softens” this penalty, servicing the vast majority of such
memory misses with fast microsecond-level decompression.
This design provides graceful performance degradation and is
the core reason for the superior system resilience we observed.

Although our results are promising, we acknowledge the
following limitations, which also point to valuable directions
for future work.

• Evaluation Environment: Our evaluation was carried
out on an older hardware and software platform (a Google
Pixel 3 running Android 10) to ensure a rigorous com-
parison with the state-of-the-art Fleet framework. Future
work is needed to validate our findings on modern devices
with different resource constraints.

• Workload Selection: The suite of commercial applica-
tions, though representative, cannot cover all possible us-
age patterns. Performance in other specialized application
categories could be explored.

• Static Parameters: The aging thresholds remain static
during runtime. A promising direction is to develop a
dynamic policy in which these thresholds adapt to the
changing state of the real-time system, such as ZRAM
usage or battery status.

VI. CONCLUSION

This paper proposed a reactive three-tier memory swapping
framework, called PhantomSwap, that enhances multitasking
resilience on mobile devices. Our evaluation demonstrates
that PhantomSwap significantly increases application cache
capacity and improves worst-case hot-launch latency, with
only modest system overheads. By leveraging an intermedi-
ate ZRAM tier and a co-designed Garbage Collector (GC)
integration, our work presents a robust and practical solution
for delivering a more consistent and fluid user experience in
memory-constrained mobile environments. We also identify
several promising directions for future work, including hybrid
policy controllers and asynchronous prefetching.
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