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Abstract—The Internet of Medical Things (IoMT) enables
continuous physiological monitoring but remains vulnerable to
cyberattacks and opaque decision-making. This paper presents
RemoteCare, a secure and explainable dual-task framework for
real-time health and attack detection. RemoteCare employs a
hybrid CNN-GRU-LSTM architecture to jointly classify physio-
logical states (Normal, Warning, Critical) and detect network in-
trusions, with SHAP-based interpretability ensuring transparent
predictions. Predictions are immutably logged on the PureChain
blockchain and linked to IPFS for scalable storage. Experiments
on the WUSTL-EHMS-2020 dataset demonstrate 99.7% health
classification accuracy and 96.0% attack detection accuracy,
outperforming state-of-the-art baselines. Benchmarking further
shows PureChain achieves 0.2572 s latency and zero-cost trans-
actions, validating RemoteCare as a reliable, auditable IoMT
monitoring solution.

Index Terms—IoMT, Cyberattack Detection, Real-Time Moni-
toring, XAI, Multimodal Data Fusion, Blockchain-Based Predic-
tion Logging.

I. INTRODUCTION

The IoMT has rapidly evolved from simple sensor-based
monitoring into a transformative ecosystem of interconnected
devices enabling continuous, real-time healthcare delivery. Its
most prevalent applications include patient vital-sign tracking
and chronic disease management; however, [oMT is increas-
ingly being deployed in mission-critical domains such as mil-
itary healthcare, battlefield casualty monitoring, and disaster
response coordination [1]. These environments demand rapid,
data-driven decisions where delays can significantly impact
morbidity and mortality outcomes. Through wearable devices
and edge/cloud platforms, IoMT enables the continuous mon-
itoring of key physiological signals such as heart rate, SpOs,
respiratory rate, and blood pressure [2]. This capability is
particularly critical in remote or high-risk settings, where
access to traditional medical infrastructure is limited. More-
over, by integrating IoMT with artificial intelligence (AI) and
blockchain technologies, healthcare systems are shifting from
reactive to proactive care paradigms [3]. These integrations
enhance system resilience, ensure data transparency, and foster
trust in patient monitoring workflows, ultimately improving
health outcomes across diverse clinical and operational con-
texts.

Despite this progress, [oMT systems face two critical chal-
lenges: (i) accurate health state prediction from heterogeneous
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physiological data and (ii) robust defense against cyber threats
such as spoofing, denial-of-service, and data tampering [4] etc.
Prior works have addressed either health monitoring [1] or
intrusion detection independently [5], but very few integrate
both domains. Explainable AI (XAI) has been introduced to
improve interpretability [6], and blockchain has been explored
for secure IDS logging [4], proving to be a veritable tool for
privacy preservation in IoMT [7]. However, these approaches
remain siloed, often lacking real-time deployment, dual-task
capability, or role-based access to sensitive results [8].

In mission-critical IoMT scenarios, concurrent health
anomalies and cyberattacks may occur, requiring a unified,
explainable, and auditable framework. Existing health mon-
itoring solutions often fail to account for adversarial risks,
while IDS methods frequently overlook patient well-being.
Moreover, the absence of transparent decision support and
immutable audit trails limits clinician trust and system ac-
countability. A holistic approach that fuses multimodal IoMT
data, applies XAI across both health and attack predictions,
and ensures secure blockchain-backed traceability is therefore
necessary to bridge this gap and enhance operational reliabil-
ity.

To address these challenges, we propose RemoteCare, a
blockchain-assisted hybrid deep learning framework for real-
time health monitoring and cyberattack detection in IoMT. The
developed edge-based hybrid deep learning model possesses
a dual functional capacity, enabling it to detect the health
status of users in real-time and identify cyber-attacks within
the network pipeline. On the other hand, the resource-friendly
blockchain security framework ensures speedy and energy-
efficient tamper-proof validation of access is maintained.

Therefore, the key contributions of this study are:

« A precision-conscious and dual-task CNN-GRU-LSTM
architecture for simultaneous physiological state classifi-
cation and intrusion detection is developed.

o Blockchain-enabled auditability via PureChain and IPFS,
offering immutable and role-based access control, is
integrated.

« SHAP-based explainability applied to both outputs, en-
suring transparent and trustworthy decision support for
understandable end-user feedback..
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TABLE I
SUMMARY OF REVIEWED WORKS AND LIMITATIONS ADDRESSED

Authors Dataset Al Model(s) Blockchain XAI Focus Key Contributions Limitations
[4] TON_IoT, SVM, REF, DT, Yes No Attacks Compared classical ML and DL Slow simulations;
Edge_IIoT, GB, CNN, LSTM, models for anomaly detection; on- blockchain test
UNSW-NB15 CNN-LSTM chain/IPFS data security complexity
[5] Not stated Deep Q-Learning No No Attacks DRL for attack classification, DDoS No blockchain/XAI; no
+SVM emphasis health status
[9] WUSTL-EHMS KNN, SVM, RF, No No Attack Built a real-time EHMS testbed No blockchain/XAlI
2020 etc. (comparative) combining medical and network fea-
tures
[10] Wearables/vitals  Thresholding, sim- No No Health End-to-end remote monitoring No IDS/XAl/blockchain
+ alerts ple ML
RemoteCare WUSTL-EHMS- Hybrid Yes Yes Health  + Dual-task real-time classification +
(Ours) 2020 CNN-GRU-LSTM Attack intrusion detection; blockchain +
with SHAP IPFS audit trail

The rest of the paper is organized as follows: Section II
reviews related work; Section III details the methodology; Sec-
tion I'V presents experimental results; and Section V concludes
with implications and future directions.

II. RELATED WORKS

As seen in Table I, the work on IoMT anomaly detection and
monitoring has produced several noteworthy contributions, but
existing work often remains limited in scope compared to the
holistic goals of RemoteCare. Olawale et al. [4] investigated
anomaly detection using classical and deep learning models
(SVM, RF, DT, GB, CNN, LSTM, CNN-LSTM) across
diverse datasets such as TON_IoT and UNSW-NB15. Their
work integrated blockchain and IPFS for tamperproof logging,
but evaluations suffered from slow simulations and deploy-
ment complexity, with no health monitoring or explainability
components.

Daher [5] employed Deep Q-Learning with an SVM base-
line for intrusion detection in IoMT healthcare networks, fo-
cusing on DDoS attack classification. While effective for adap-
tive attack detection, the study did not incorporate blockchain
for integrity or XAl for interpretability, and it excluded health-
related predictions. Similarly, Hady et al. [9] developed a real-
time testbed (WUSTL-EHMS-2020) that fused medical and
network data to evaluate classical ML methods such as KNN,
SVM, and RF. Although this work highlighted the benefit of
multi-domain feature integration, it lacked blockchain-based
auditability and did not include explainability layers, limiting
clinical trust in predictions. In contrast, Wong et al. [10]
proposed an IoMT monitoring system based on thresholding
and simple machine learning for wearables, focusing solely on
patient vitals. Their system provided end-to-end monitoring
but did not integrate intrusion detection, blockchain, or inter-
pretability, leaving it vulnerable to cyber threats and limited
in transparency.

In summary, while prior works have either explored
blockchain-based anomaly detection [4], advanced IDS tech-
niques without health prediction [5], [9], or lightweight
health monitoring [10], none provide a unified, real-time
framework that addresses both health and security domains.
RemoteCare distinguishes itself by combining a hybrid

CNN-GRU-LSTM architecture for dual-task classification,
SHAP-based interpretability for both health and attack pre-
dictions, and PureChain blockchain with IPFS for zero-cost,
low-latency, tamperproof audit trails, thereby addressing the
limitations identified in earlier studies (Table I).

III. SYSTEM DESIGN AND METHODOLOGY

The architecture of RemoteCare Fig. 1 is composed
of four tightly integrated layers: sensing, Al inference,
blockchain/IPFS logging, and explainability feedback. At the
sensing layer, wearable and IoMT devices capture multi-
modal data such as heart rate, respiratory rate, and network
traffic metrics. This layer ensures reliability by providing
continuous, real-time data streams. The Al inference layer
processes these streams through a hybrid CNN-GRU-LSTM
model, responsible for both health state prediction and attack
detection, thus embedding intelligence into the pipeline. The
blockchain/IPFS layer secures outputs by immutably recording
predictions on-chain while storing bulk data in distributed
storage, guaranteeing integrity. Finally, the XAI feedback
layer employs SHAP to provide interpretability of both health
and attack classifications, enhancing system transparency and
building trust among clinicians and operators.

RemoteCare employs a hybrid CNN-GRU-LSTM archi-
tecture designed to capture both short-term patterns and long-
term dependencies in heterogeneous IoMT data. The model is
structured into two specialized branches. The network branch
applies 1D convolutional layers with a kernel size of 1,
followed by dense bottlenecks, to emphasize inter-channel cor-
relations across traffic attributes rather than temporal depen-
dencies. This ensures that short bursts in network traffic and
abrupt anomalies are effectively captured. The health branch
integrates a GRU layer for efficient intermediate memory
retention, followed by a stacked LSTM layer that models long-
term physiological trends. This sequential design balances
computational efficiency with the ability to detect both mid-
range and slowly evolving health deterioration patterns, such
as hypoxia or cardiac distress.

The embeddings from both branches are concatenated, reg-
ularized with dropout, and passed into dual-output heads: (i) a
sigmoid classifier for binary attack detection and (ii) a softmax
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Fig. 1. The proposed System Architecture for RemoteCare

classifier for three-class health state prediction (Normal, Warn-
ing, Critical). This multitask learning strategy not only reduces
redundancy by sharing learned representations but also acts as
a form of regularization, improving generalization across both
health and attack prediction tasks. In addition, a rule-based
health categorization layer, aligned with the National Early
Warning Score (NEWS) clinical guidelines, complements the
model by flagging critical anomalies for immediate alarms
even before full inference. This hybrid of data-driven learning
and clinically validated thresholds ensures rapid intervention
in mission-critical scenarios while maintaining the robustness
of deep learning predictions.

Let X(™ ¢ RT* denote the network features over a
sliding window of length T, and X" € RT*» denote the
synchronized physiological features. The hybrid architecture
is designed as follows:

Network Branch (CNN). A 1D convolution with kernel size
1 captures local channel interactions:

H" = o (W s X{" 4 50 (1)

followed by flattening and dense projection.

Health Branch (GRU-LSTM). Temporal structure in vital
signs is modeled by a GRU layer followed by an LSTM for
long-term dependencies:

he = (1—2) Ohi—q —&-zt@]:m = fiOc_1+it O, (2)

where z; and r; are GRU update and reset gates, and (i¢, f, o)
are LSTM input, forget, and output gates.

Feature Fusion and Outputs. The learned representations are
concatenated:

z2=0¢ ([z("); Z(h)]Wf + bf) , 3)

then mapped to two outputs:
G = o(Waz + ba),

where §(*) € {0,1} (attack/normal) and §*) € {0,1,2}
(Normal, Warning, Critical).

The multi-task objective combines binary cross-entropy
for attack detection and categorical cross-entropy for health
prediction:

£ =a-BCEy®,5@) + 3. CE(y™, ¢™), @

g = softmax (W}, z + by,),

with weights «, 3 balancing the two tasks.

Blockchain and IPFS Integration: To ensure auditability
and tamperproof integrity, all model predictions are logged
through a PredictionLogger smart contract deployed on the
PureChain blockchain. This decentralized framework guar-
antees both data integrity and auditability while embedding
strong security mechanisms [11]. PureChain is a specialized
blockchain platform designed to overcome the core “quad-
lemma” challenges of decentralization, security, scalability,
and transaction cost efficiency [12]. Its capabilities include
zero transaction fees, user-friendly interfaces, an intuitive
API, full EVM compatibility, Python-based readability and
deployment, robust cryptographic standards, and integrated
account management.

Predictions generated by the inference model are securely
logged using a blockchain-backed mechanism. The workflow
begins with a prediction event, which is encoded into a trans-
action that includes metadata such as sender, timestamp,
and the hash of the prediction stored in IPFS as a Content
Identifier (CID). A simplified transaction format is given
below:
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"sender": 0x1234...ABCD,
"timestamp": 1695256102,
"health_class": "Critical",
"attack_class": "Attack",
"cid": "OmXYZ...123"

This transaction is submitted to the smart contract, im-
mutably recorded on-chain, and linked to the corresponding
data in IPFS. The contract, built using Solidity and Open-
Zeppelin’s AccessControl, enforces role-based permissions
(LOGGER_ROLE) so that only authorized devices can sub-
mit records. Each log entry contains the sender’s address,
timestamp, and serialized health and attack predictions. For
scalability, large prediction files and historical data are stored
on IPFS, with content identifiers (CIDs) recorded on-chain
to maintain verifiable links between blockchain events and
distributed storage. Performance benchmarking shows that
PureChain’s Proof-of-Authority (PoA?) consensus achieves
significantly lower latency and higher throughput compared to
Ethereum’s Proof-of-Stake IV-1, while eliminating transaction
costs. This makes PureChain more suitable for real-time, high-
frequency IoMT logging.

Explainable AI (XAI) Integration: To enhance trust and
transparency, RemoteCare integrates SHapley Additive exPla-
nations (SHAP) into the health and attack prediction pipeline.
SHAP values approximate the marginal contribution of each
feature x; to the model’s prediction f(z), formulated as:

M
f(@) = o+ Z Pixi,

i=1

where ¢; represents the Shapley value of feature ¢, derived
from cooperative game theory. These values quantify how each
feature contributes to shifting the prediction away from the
model’s expected baseline ¢y.

In practice, SHAP’s DeepExplainer was applied separately
to the network branch, the health branch, and the fused
representation, allowing attribution of predictions to their most
influential features. For example, high packet jitter and abnor-
mal load were consistently identified as strong contributors to
attack detection, whereas SpOs levels and elevated heart rate
were key drivers of critical health predictions. This dual-level
interpretability provides both local explanations (e.g., why a
particular patient instance was flagged Critical or why a traffic
flow was classified as malicious) and global explanations (e.g.,
which features consistently influence outcomes across the
dataset). Local interpretability supports clinician confidence in
individual prediction, while global insights guide system-wide
policy tuning and feature engineering. SHAP outputs were
visualized using summary plots for global analysis and force
plots for patient-level interpretation. By integrating SHAP
across both tasks, RemoteCare not only improves the trans-
parency of Al-driven predictions but also delivers actionable
insights into the underlying physiological deterioration and

cyberattack patterns, ensuring robustness in dynamic IoMT
environments.

A. Data Preprocessing and Experimental Setup

Dataset Description: We evaluate the proposed Remote-
Care framework using the WUSTL-EHMS-2020 dataset [9],
which combines synchronized physiological signals with net-
work traffic features. The dataset contains 16,318 samples,
covering both benign and malicious traffic, alongside vital
signs collected from an IoMT emulation environment. This
joint feature space enables simultaneous health and attack
classification.

TABLE I
CNN-GRU-LSTM MODEL PARAMETERS

Parameter Value
Input window size (1) 60

CNN filters (kernel=1) 64

GRU units 64
LSTM units 32
Fusion dense units 64
Dropout (fusion) 0.5
Optimizer Adam (Ir=0.001)
Batch size 256
Epochs 100

Loss BCE (attack), CE (health)
Early stopping patience 10

Data Preprocessing Non-numeric entries in physiological
features were coerced into numeric values, while missing val-
ues were imputed with the column mean. Each physiological
sample (") was mapped to a discrete health class ") (Nor-
mal, Warning, Critical) using clinically accepted thresholds
based on the National Early Warning Score (NEWS) [13]:

0 if all vitals are within normal ranges,

m_

Yy, = if any vital deviates into warning ranges,

2 otherwise (critical condition).

For network intrusion detection, attack labels were consoli-
dated into a binary mapping: {0 : Normal, 1 : Attack}. To
preserve temporal dependencies, a sliding window of 7' = 60
timesteps was applied, yielding inputs X () ¢ RT*Fn and
X" e RT*Fr where F,, = 10 and Fj, = 5 are the top-
ranked features by importance. Min—max normalization was
applied independently to each channel.

1) Experimental Setup: The dataset was partitioned into
training (70%), validation (15%), and test (15%) sets
with stratification to maintain class distribution. The hybrid
CNN-GRU-LSTM model was implemented in Python 3.10
with TensorFlow/Keras 2.11, Scikit-learn 1.2, and SHAP 0.41.
Blockchain logging was deployed on the PureChain network
(PoAZ? consensus) using Solidity 0.8.20 and Web3.py 6.0, with
Ethereum (PoS) used as a baseline for performance com-
parison. Model hyperparameters are summarized in Table II.
Training was conducted on a workstation equipped with an
Intel Core 19-12900K CPU @ 3.20 GHz, 64 GB RAM, and
an NVIDIA RTX 3090 GPU (24 GB). Model selection was
based on the validation macro-F1 score.
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IV. RESULT DISCUSSION AND PERFORMANCE EVALUATION

Table III compares the proposed RemoteCare framework
against baseline and state-of-the-art models for health and at-
tack classification. For physiological prediction, earlier works
such as CNN [14], SVM [15], and LSTM [16] achieved accu-
racies ranging from 90.0% to 94.2%. In contrast, RemoteCare
attained 99.7% accuracy, 100% precision, 99.4% recall, and
100% F1-score, demonstrating superior capability to discrimi-
nate between Normal, Warning, and Critical states. For attack
detection, prior studies such as CNN [4], RF [9], [10], and
DQN [5] achieved accuracies in the 85-95% range, while the
best-performing ensemble model by Gupta et al. [17] reached
99.4% accuracy but lacked health monitoring. RemoteCare
delivered 96.0% accuracy, 96.0% precision, 99.0% recall,
and 98.0% Fl-score, achieving a favorable precision-recall
balance. Compared to CNN-LSTM baselines, RemoteCare
reduced false positives while maintaining high recall, ensuring
robustness against missed attacks. These results confirm that
RemoteCare not only outperforms single-domain baselines
but also uniquely provides dual-task prediction in a unified
framework.

1) The Blockchain Integration Performance: The
PureChain auditability of RemoteCare was benchmarked on
both Ethereum Mainnet (PoS) and PureChain (PoA?), with
results summarized in Table IV. Ethereum incurred high
latency (6.572 s), limited throughput (15.21 TPS), and non-
negligible transaction costs ($0.41-$1.50+ per transaction). In
contrast, PureChain achieved 0.2572 s latency, 69.03 TPS,
and zero transaction cost, validating its suitability for high-
frequency IoMT logging. These improvements arise from
PureChain’s consensus algorithm (PoA?), which is optimized
for scalability and low-cost operation in permissioned
networks. Thus, while FEthereum demonstrates security
maturity, PureChain enables the real-time, cost-free, and
scalable audit trail required in mission-critical healthcare
applications.

To enhance transparency, RemoteCare integrates SHAP-
based XAl to attribute predictions to input features. For health
predictions, SHAP identified Heart_rate, Resp_Rate,
and SpO9 as the dominant drivers of Normal, Warning, and
Critical classification, Fig 3. For attack detection, features such
as Packet_num, DstJitter, and Load were identified
as highly influential in distinguishing malicious traffic from
benign flows, see Fig 2. These attributions confirm that the
model leverages clinically and technically meaningful features,
providing interpretable outputs to clinicians and operators. By
embedding explainability at both the health and security layers,
RemoteCare addresses the transparency gap left by earlier
IDS-focused or health-only systems, thereby strengthening
trust and accountability in real-time IoMT monitoring.

V. CONCLUSION

This paper introduced RemoteCare, a blockchain-assisted,
explainable deep learning framework designed to address the
dual challenges of health state prediction and cyberattack

High
Packet_num col o
SrcLoad
Load
sMinPktSz
Dstjitter
Rate
Dur
DintPkt
DstBytes
DstLoad

TotPkts

Feature value

SIntPkt
sMaxPktSz
TotBytes
SrcBytes
Srcjitter
pLoss
pSrcLoss
SintPktAct

pDstLoss

Low

~0.0003-0.0002-0.00010.0000 0.0001 0.0002 0.0003 0.0004
SHAP value (impact on model output)

Fig. 2. SHAP summary plot: Top network features impacting attack predic-
tion. Features with higher absolute SHAP values have greater influence on
the model output.

High
Heart_rate
Resp_Rate
ST

Sp02

SYS

Feature value

Pulse_Rate
Temp ..

DIA

T T T T T T T T Low
-0.002 0.000 0.002 0.004 0.006 0.008 0.010 0.012

SHAP value (impact on model output)

Fig. 3. SHAP summary plot: Physiological features contributing to health
status prediction. Key drivers include Heart_rate, Resp_Rate, and
SpO2.

detection in IoMT environments. By integrating a CNN-
GRU-LSTM hybrid model with SHAP-based interpretability
and PureChain blockchain auditability, RemoteCare ensures
accurate, transparent, and tamperproof monitoring. Experi-
mental evaluation showed that RemoteCare achieved 99.7%
accuracy in health classification and 96.0% accuracy in attack
detection, surpassing prior state-of-the-art models. Blockchain
benchmarking confirmed that PureChain significantly reduces
latency and transaction costs compared to Ethereum, enabling
real-time, cost-free logging. These results demonstrate both the
technical robustness and operational feasibility of the proposed
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TABLE III
COMPARISON OF PHYSIOLOGICAL (HEALTH) AND ATTACK PREDICTION PERFORMANCE OF MODELS

| Physiological (Health) Prediction |

Attack Prediction

Reference Model

| Acc. Prec. Recall F1 | Acc. Prec.  Recall F1
[14] CNN 90.00 90.00 95.00 92.00 - - - -
[15] SVM 94.20 93.50 95.00 94.20 - - - -
[5] DQN - - - - 92.40 - - -
[9] RF - - - - 94.50 - - -
[17) Ensemble (DT/RF/XGB/ET/GB) - - - - 9944 9976 99.45  0.996
[6] XGB - - - - 92.60  92.80 92.60 92.60
RemoteCare (Ours) CNN-GRU-LSTM 99.70  100.00 99.40 100.0 | 96.00  96.00 99.00 98.00
TABLE IV [6] M. M. Alani, A. Mashatan, and A. Miri, “Explainable ensemble-based
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