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Abstract—In a cloud-edge collaboration for Internet-of-Things
(IoT), transfer learning can significantly enhance personalized
context learning. This approach allows models trained on broader
datasets in the cloud to be adapted for specific devices and
scenarios at the edge, leading to more accurate and efficient
Artificial Intelligence (AI) applications within the IoT ecosystem.
However, to comply with privacy regulations, the data must
be protected throughout the AI development lifecycle, from
collecting data initially to storing and using it in the final model.
This necessitates privacy-preserving computation techniques to
minimize the exposure of sensitive information. Therefore, we
implement a lightweight privacy-preserving transfer learning
scheme based on learnable encryption to adapt a pre-trained
model to local data characteristics in a privacy-preserving
manner. Simulation analysis shows that personalized context
can be learned within learnable encryption ciphertext, achieving
significant improvements in pre-trained model performance i.e.,
the improvements range from 16% to 30%.

Index Terms—artificial intelligence, cloud-edge collaboration,
internet-of-things, learnable encryption, transfer learning.

I. INTRODUCTION

Cloud-edge collaboration architecture is a distributed com-
puting paradigm that optimizes the allocation of computa-
tional tasks between powerful, centralized cloud servers and
geographically closer, resource-constrained edge devices. This
architecture leverages the distinct advantages of both envi-
ronments to achieve reduced latency, improved accuracy, en-
hanced privacy, scalability and resource efficiency for various
applications, especially those involving artificial intelligence
(AI). In general, AI has two main phases: a training phase,
which is computationally intensive, and an inference phase,
which requires less power. For Internet-of-Things (IoT), it is
efficient to train AI models on powerful cloud servers and then
deploy them for inference on edge devices, in the proximity
of where data is generated. In addition, pre-trained models
can be fine-tuned on the edge to be adapted to the evolving
context of IoT. For example, [1] proposed a strategy that
involved creating tailored models for individual edge devices
by deriving sub-models from a larger, pre-trained model for
several applications such as, human activity recognition, image
classification and speech recognition. However, a significant
challenge remains in ensuring privacy when handling sensitive
data on edge devices.

Towards this, privacy-preserving personalized context learn-
ing techniques are proposed based on federated learning (e.g,
[2] and [3]), homomorphic encryption (e.g, [4]), differential

privacy (e.g, [5]) and learnable encryption (e.g., [6]). These
methods allow for personalized model training without di-
rectly sharing raw data, enhancing both privacy and model
performance. However, they still face limitations such as
high communication costs and the need for encryption in
federated learning, high computational costs in homomorphic
encryption, challenges in directly applying differential privacy
to images, and the need to balance privacy and usability in
learnable encryption.

Despite its privacy-utility tradeoff, learnable encryption
[6]–[12] offers a lightweight data manipulation approach
to privacy-preserving deep learning, making it suitable for
resource-constrained devices like IoT end-devices. It hides
plaintext contents by modifying only selected pixel values
while retaining its semantics to enable DL model computa-
tion in the encrypted domain. This approach is particularly
useful for scenarios where strict cryptographic security is
not paramount, but resource efficiency and compatibility with
existing DL models are important. Existing works in learnable
encryption mainly focus on ensuring privacy during the initial
model training and inference phases, often ignoring the cru-
cial aspect of adapting the trained model to the local data
characteristics. Therefore, in this study we implement and
analyze several learnable encryption algorithms to design a
lightweight privacy-preserving transfer learning framework for
personalized context learning in cloud-edge assisted IoT.

II. METHODS

A. Learnable Encryption

The core idea of learnable encryption is to hide plaintext
contents by modifying only selected pixel values while retain-
ing its semantics to enable privacy-preserving computation of
various applications. Based on this principle several learnable
encryption algorithms such as [9], [10] and [6] are proposed.
Let P is a plaintext image and C is its ciphtertext image,
each with N = H × W pixels, H rows and W columns.
Also, their elements are indexed as

(
⌊ i
H ⌋, i mod W

)
. Then,

learnable encryption function proposed in [9], [10] and [6] can
be defined as below.
Sirichotedumrong et al.’s scheme [9]. This is a two-step
learnable encryption scheme where in the first step half of the
pixel values of the image P are modified as given in (1) to
produce an intermediate output Ĉ.
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Ĉ(i) =

�
P(i) ⊕ 255, if K1

(i) = 1,

P(i), if K1
(i) = 0,

(1)

where K1 ∈ Z2 is a random binary key. For a color image,
this process is performed in each color component using the
same key. Then, in the next step, color channels are shuffled
using a random key K2 ∈ Z6. Each element of the key K2

represents a unique permutation. This color channel shuffling
function can be defined as,

C(i) = f
�
Ĉ(i),K

2
(i)

�
. (2)

Huang et al.’s scheme [10]. The simple operations of [9]’s
scheme makes it vulnerable to data reconstruction attacks as
demonstrated in [13]. Therefore, Huang et al. [10] proposed
to further process the intermediate output Ĉ produced in (1)
by dividing it into square blocks and perform smoothing on
each block using different filters as follows,

C(b) = g(B(b),m,K2
(i))}

B
b=0, (3)

where B(b) ∈ Ĉ is the bth image block, and m ∈ M is a set
that consists of identity, mean, median, max and min filters.
Also, K2 ∈ ZB

5 is a key to randomly choose a filter.
Ahmad et al.’s scheme [6]. Alternatively, Ahmad et al. [6]
proposed a learnable encryption algorithm that consists of two
steps. First, selected pixel values are mixed with a random key
K1 ∈ ZN

256 and previously encrypted pixel value c to produce
an intermediate output Ĉ as,

Ĉ(i) =



K1

(i) ⊕

��
P(i) +K1

(i)

�

mod 256

�
⊕ c, if K(i) > 0,

P(i) ⊕ γ, if K(i) = 0,

(4)

where the parameter γ ∈ [0, 255], and γ = 0 leaves a pixel
value unmodified while γ = 255 fully inverts a pixel value.
Consequently, γ controls the visibility of the image contents.
For additional security, c value can be randomly chosen from
the previously encrypted or plaintext pixel values using K2 ∈
ZN
N as follows,

c =



Ĉ(

K2
(i)

), if K2
(i) < i,

P(
K2

(i)

), if K2
(i) ≥ i.

(5)

Then, in the second step, bitplane manipulation is performed
to modify all pixel values using K3 ∈ ZN

N as follows,

C(i) =





Ĉ(i) ⊕
�
C(

K3
(i)

)modβ
�
, if K3

(i) < i,

Ĉ(i) ⊕
�
Ĉ(

K3
(i)

)modβ
�
, if K3

(i) ≥ i,
(6)

where the parameter β controls the number of least significant
bits to be modified in a pixel. Specifically, its value is chosen
based on the number of bits required to represent the pixel
Ĉ(i) to restrict the loss of information for learnability.

B. Proposed Privacy-Preserving Transfer Learning

1) Privacy-preserving training: For an image classification
task, let D := {[Xi], [yi]} be a dataset of N samples where
X := [X1, . . . ,XN ] ∈ RH×W is the input space containing
images as high dimensional vectors and Y := [y1, . . . , yN ] ∈
Rk is the output space containing k image categories. In
general, the dataset D is divided into two disjoint subsets Ds

and Dt, where (x, y) ∈ Ds is used for training a model, while
(x, y) ∈ Dt is used for evaluating the trained model. During
training, a parameterized neural network function fθ updates
its parameters θ for mapping the input data X to the output
Y as closely as possible, i.e., {fθ : X → Y |fθ(xi) ≈ yi},
by minimizing a loss function L. The loss function L(fθ)
measures the distance of the model output Ŷ ← fθ(X ) from
the actual output Y . The training of a neural network can be
represented as a tuple of four elements (Ds, f, θ0, g), where
f is the neural network architecture, Ds is the training data,
θ0 is the set of initial parameters, and g is a training function.
The function g is a process of learning a model based on
Ds given the initial parameters θ0 to obtain a trained neural
network fθ with learned parameters θ as fθ ← fθ0(Ds). On
the other hand, the samples (x, y) ∈ Dt are used to evaluate
the trained model fθ performance in how closer the predicted
values fθ(x) are to the actual output y, which can be defined
by the probability given as follows,

Pr [fθ(x) → y] ,where (x, y) ∈ Dt. (7)

For privacy-preserving training, let h be an encryption func-
tion that encrypts the dataset D with a secret key K as
C = {(h(x,K), y) : (x, y) ∈ D}. Subsequently, Cs and
Ct are the training and test sets, respectively. Then, the
privacy-preserving training of a neural network is as a tuple
(Cs, f, θ∗0 , g), indicating that a trained neural network fθ∗ with
learned parameters θ∗ is obtained in a privacy-preserving man-
ner, i.e., fθ∗ ← fθ∗

0
(Cs). Similar to non-secure training, the

accuracy of fθ∗ can be measured by computing its probability
on the encrypted test set Ct as follows,

Pr [fθ∗(x) → y] ,where (x, y) ∈ Ct. (8)

2) Privacy-preserving transfer learning: In general, a
model consists of an input and output layer, and at least one
hidden layer. The dimension of the input layer is the input size
H×W , and the dimension of the output layer is the output size
k. For image classification, the model f usually has a feature
extractor module consisting of multiple convolution layers,
followed by a classifier module, comprised of fully connected
layers. The classifier module is inherently task-specific while
the feature extractor module can be shared across different
tasks. Thus allowing us to reuse the feature extractor, having
learned general representations from a large dataset on a
source task T1, for a relevant target task T2. The ability to reuse
a pre-trained feature extractor in this way is often known as
transfer learning. For a set of tasks T = [T1, T2], the training
set can be defined as, Cs,T := {[X s,T ], [Y s,T ]} and test set as,
Ct,T := {[X t,T ], [Y t,T ]}. Here, the dataset is encoded using
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one of the learnable encryption functions outlined in Section
II-A, to preserve privacy. Also, the objective function can be
defined as follows,

min
fT
θ ∈FT

θ

L
(
fT
θ

)
= min

fT
θ ∈FT

θ

E
[
LT

(
Y T , f

T
θ (XT )

)]
, (9)

where fT
θ ∈ F T

θ is the best estimator such that {fT
θ : X T →

Y T |fT
θ (xT

i ) = yTi } for a task T , and LT (f
T
θ ) is the loss

function that measures a model fT
θ : XT → Y T for a given

task T . The goal here is to leverage the pre-trained model
fT1

θ from the source task to find the best estimator fT2

θ for
the target task. However, prior to this, transformation of the
input and output is necessary because the input X T and output
Y T dimensions may differ for each task for example, the
input image resolution and the number of categories may vary
from task T1 to task T2. Therefore, based on the mathematical
framework proposed in [14], we describe the transfer learning
procedure in the following three steps.
(Step 1) Input transformation. When using a pre-trained
model, the input in the target task must be processed to
match the properties such as, image resolution, pixel value
normalization etc., of the source task input. Therefore, an
input transformation function gX can be defined as mapping
a sample from the target input space X T2 into the source
input space X T1 such that gX(XT2) ∈ X T1 . For example,
the gX can be a resizing function to meet the spatial and/or
spectral dimension of the model input. It may also include the
encryption function h(.,K) used for protecting CT1 .
(Step 2) Applying pretrained model. In this step, the trans-
formed data gX(XT2) from the previous step is used as an
input to the pre-trained model fT1

θ that maps it into the source
output space Y T1 as fT1

θ

(
gX(XT2)

)
∈ Y T1 .

(Step 3) Output transformation. A pre-trained model’s
classifier is task specific, which may not directly translate to
a new task because of different label space. This discrepancy
necessitates a transformation to adapt the pre-trained model’s
output for the different target task. An output transformation
function gY can be defined as mapping Step 2’s output into
the target output space Y T2 as gY

(
fT1

θ

(
gX

(
XT2

)))
∈ Y T2 .

This transformation may include attaching additional layers
after the feature extractor of fT1

θ and fine-tuning them for the
target task T2.

For the transfer learning, the best estimator fT2

θ to achieve
objective in (9) for the target task T2 is given as follows,

fT2

θ = gY
(
.,
(
fT1

θ ◦ gX
(
XT2

)))
, (10)

and fT1

θ is trained via direct learning for the source task T1.

III. SIMULATION RESULTS

A. System Model

This study considers a cloud-edge collaboration that allows
for a balance between resource utilization and performance.
For example, the cloud can train large and complex models,
while the edge can handle real-time inference and transfer
learning closer to the data source. Therefore, this cloud-edge

collaboration paradigm for AI in IoT ecosystem involves a
system model with three entities i.e., IoT end devices, edge
servers, and cloud servers. The IoT end devices are respon-
sible for capturing data from the physical environment and
performing initial preprocessing steps such as encryption prior
to transmitting it to other entities. The edge servers provide
the computational resources necessary to perform tasks such
as model inference and transfer learning. Finally, the cloud
servers are capable of handling the training of initial models.

B. Datasets

For the initial model training we use CIFAR10 dataset
that consists of 60K color images divided among 10 dis-
tinct classes, each with a size of 32×32 pixels. Also, for
privacy-preserving transfer learning analysis we use Kaggle
Dogs vs. Cats dataset. Although the dataset consists of 25K
color images of dimensions 224×224, we choose a subset of
2K images from this dataset to better simulate limited data
scenario. Consequently, demonstrating a more realistic and
effective simulation of the advantages and challenges of the
transfer learning.

C. DL-based Classification Model

The primary advantage of learnable encryption is its di-
rect compatibility with state-of-the-art deep learning models.
Among the existing models, EfficientNet [15] (EfficientNetV1)
is a family of lightweight convolutional neural network models
optimized for high efficiency in terms of parameters and Float-
ing Point Operations (FLOPs). It takes advantage of neural
architecture search (NAS) to design a baseline EfficientNet-B0
while aiming to find an optimal tradeoff between accuracy and
computational cost (FLOPs). Instead of independently scaling
network depth, width, or resolution, EfficientNet introduces
a simplified yet an effective compound scaling strategy that
uniformly scales up all three dimensions to obtain a family of
models B1-B7. Consequently, each subsequent model (B0 to
B7) represents a scaled-up version of the baseline, offering a
balance between higher accuracy and increase computational
requirements. Compared to its predecessor, a key advantage of
EfficientNet models lies in their efficiency i.e., they achieve
superior accuracy with significantly fewer parameters and
FLOPs. Therefore, in this work we consider EfficientNetV1
model to analyze the efficiency of different learnable en-
cryption schemes in privacy-preserving transfer learning. For
model training setup, we refer to [6].

D. Performance Analysis

This subsection divides the simulation analysis into two
parts: privacy-preserving initial model training and privacy-
preserving transfer learning. The privacy-preserving initial
model training analyzes the performance of each learnable
encryption in training the initial model. This trained model
then supports the subsequent privacy-preserving transfer lean-
ing analysis, which involves analyzing and adapting the initial
model to the local data characteristics. Furthermore, for each
learnable encryption technique, we use two sets of parameters.
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TABLE I
PERFORMANCE ANALYSIS OF LEARNABLE ENCRYPTION SCHEMES FOR

PRIVACY-PRESERVING TRANSFER LEARNING ANALYSIS. S ∈ {D, C}
DENOTES THE PLAINTEXT AND CIPHERTEXT DATASETS.

Methods fτ1
θ (Sτ1 ) fτ1

θ (Sτ2 ) fτ2
θ (Sτ2 )

Plain 93.60 76.56 95.31
[9]-1 86.93 70.31 86.46
[9]-2 83.70 59.38 83.33
[10]-1 83.93 54.69 84.38
[10]-2 73.97 33.33 77.08
[6]-P1 85.80 69.79 86.46
[6]-P4 78.80 65.10 85.94

For example, [9]-1 implements only one step while [9]-2
implements both steps of [9]’s learnable encryption method.
Similarly, [10]-1 and [10]-2 use encryption block size 4×4 and
8×8, respectively. Also, we use the same pseudonym of [6].
These analyses are reported in Table I and discussed below.

1) Privacy-Preserving Initial Model Training: Table I
presents the initial model (fτ1

θ ) trained for task τ1 performance
on the plaintext images (i.e., Sτ1 ∈ Dt,τ1 ) and ciphertext
images (i.e., Sτ1 ∈ Ct,τ1 ). Among the compared learnable
encryption techniques, [9] achieved the best accuracy when
only half of the pixel values were randomly inverted (i.e, [9]-
1). However, incorporating color channel shuffling as in [9]-
2 introduced a 3% error. On the other hand, the blockwise
operation proposed in [10] to deal with the vulnerabilities
of [9], preserved [9]-2’s performance as in [10]-1 at best.
However, using a larger block size for the improved security in
[10]-2 drastically decreased the model performance. Nonethe-
less, [10] provided a better security and usability tradeoff
compared to [9]. Furthermore, the parameterized learnable
encryption [6]-P1 achieved a comparable performance to [9]-
1 with better security. Although the performance degradation
from [6]-P1 to [6]-P4 is not as drastic as [10], there is still a 7%
accuracy difference. As suggested in [6] that a model learned
on plain ImageNet dataset may not necessarily correspond to
cipher-image feature space; therefore, the model’s superior
performance on plain-images i.e., fτ1

θ (Sτ1 ∈ Dτ1), can be
attributed to its initialization strategy.

2) Privacy-Preserving Transfer Learning: For this analysis,
two sets of experiments were conducted. First, the initial
trained model fτ1

θ was directly used to infer labels in the target
task domain without context learning i.e., fτ1

θ (Sτ2 ∈ Dτ2)
for non-secure inference and fτ1

θ (Sτ2 ∈ Cτ2) for secure
inference. Second, the model fτ1

θ was adapted to task τ2
using transfer learning as fτ2

θ (Sτ2 ∈ Dτ2) and privacy-
preserving transfer learning as fτ2

θ (Sτ2 ∈ Cτ2). For both
experiments, the results are given in Table I. It can be observed
that in the first scenario the model performance drastically
degraded for both non-secure and secure inference due to the
context difference. Nonetheless, the model’s accuracy error
is completely eliminated after being adapted to local data
characteristics in the second case. Thus, showing successful
application of transfer learning in both non-secure and secure
scenarios. Importantly, the learnable encryption techniques that
provided higher security benefited the most from the transfer

learning for example, the performance improvement is 3.1%
for [10]-2 while 7.14% for [6]-P4 compared to the initial
trained model.

IV. CONCLUSION

This study proposed a privacy-preserving transfer learning
strategy based on learnable encryption to adapt a pre-trained
model to the IoT context, while simultaneously ensuring data
privacy. The simulation analysis on two datasets shown that
learnable encryption can cater to privacy requirements of AI
applications within IoT environments. In the future, we are
interested to consider a special case of transfer learning called
domain adaptation in a privacy-preserving manner using learn-
able encryption.
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