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Abstract—The use of Internet of Things (IoT) devices has
expanded rapidly across numerous sectors, yet their underlying
network infrastructures remain ingenuous to ever increasing
network vulnerabilities that pose serious risks to overall sys-
tem safety. In this context, Intrusion Detection Systems (IDS)
serve as a vital defense mechanism, enabling the detection
and identification of malicious activities within IoT networks.
In this work, we present SecureDeBERTa-CNN, a hybrid IDS
framework that fuses transformer-based contextual representa-
tion learning with convolutional feature extraction to achieve
high-precision binary threat classification in security sensitive
systems. The architecture integrates a fine-tuned SecureDeBERTa
transformer with a lightweight convolutional neural network
(CNN), enabling an effective fusion of contextual semantics and
spatial feature hierarchies from structured network telemetry.
To address data imbalance and noise, the system incorporates
SMOTE-ENN resampling, while training stability is ensured
through progressive unfreezing and regularization. Evaluated on
the UNSW-NB15 dataset, SecureDeBERTa-CNN achieves 92.1%
Accuracy, 96.9% Precision, a 92.5% F1 score and a ROC-AUC
of 0.9788, outperforming classical baselines Machine Learning
(ML) and Deep Learning (DL) models. The results confirm its
robustness, adaptability, and suitability for real-world intrusion
detection in modern networked infrastructures.
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I. INTRODUCTION

The Internet of Things (IoT) has transformed modern con-
nectivity by enabling smartphones, sensors, and embedded
systems to exchange data automatically, with or without any
human intervention. IoT architectures are typically organized
into three layers perception, network, and application, each
with distinct security vulnerabilities that can be exploited by
malicious actors [1]. Common IoT attacks include Denial
of Service (DoS), malicious control, and unauthorized data
access, all of which pose significant threats to privacy, service
continuity, and system integrity. While traditional defenses
such as firewalls can filter incoming and outgoing packets
to prevent unauthorized access, achieving comprehensive IoT
security remains challenging due to the increasing complexity
of network configurations and the sophistication of emerging
threats. Attackers can exploit vulnerabilities even in permit-
ted network traffic, rendering purely reactive defenses are
insufficient for safeguarding critical IoT infrastructures. This

growing risk landscape underscores the urgent need for proac-
tive, adaptive, and intelligent security mechanisms capable of
defending against both known and novel cyber threats.

Intrusion Detection Systems (IDSs) were developed to
counter these limitations by continuously monitoring network
traffic and identifying suspicious activities through methods
such as deep packet inspection. IDSs can be deployed as
hardware or software solutions and act as an additional layer
of security, issuing alerts to administrators when anomalous
or malicious patterns are detected. However, conventional
IDS implementations face several well documented challenges.
Signature-based IDSs, for example, often exhibit slow detec-
tion speeds because they rely on matching observed patterns
to predefined signatures, which fails against zero-day exploits
and novel attack variants. Moreover, static configurations can
result in high false positive rates and poor adaptability to
rapidly evolving threat environments. As cyberattacks grow
more sophisticated, the limitations of conventional IDSs be-
come more apparent, driving research toward approaches that
deliver faster detection, higher adaptability, and improved
accuracy while minimizing false alarms in dynamic IoT net-
works.

To build an effective Intrusion Detection System (IDS),
Machine Learning (ML) can be used to develop models capa-
ble of distinguishing between normal and malicious network
connections. ML enables systems to learn without explicit
programming, thus improving the efficiency of data processing
[2]. The key objective is to design models that can detect and
mitigate threats in real time. Deep Learning (DL) techniques
[3][4] further enhance IDS capabilities through automated
pattern recognition. Unlike traditional rule based approaches,
ML and DL based IDSs can learn complex decision boundaries
from historical data and generalize to detect both known
and unseen threats. By using features extracted from network
telemetry, these models classify traffic with higher accuracy
and faster decision times, reducing detection latency. ML
and DL approaches improve both robustness and scalability.
Moreover, integrating advanced deep learning architectures
that capture semantic and structural traffic patterns enables
IDS solutions to adapt to the evolving nature of cyberattacks,
positioning these IDSs is a vital step towards securing IoT
ecosystems against increasingly sophisticated adversaries.
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In this research, we employ the UNSW-NB15 Network
Intrusion Dataset [5], developed by the University of New
South Wales Cyber Security Lab in 2015, which contains more
than 2.5 million records with 49 features representing nine
attack types Denial of Service (Dos), Shellcode, Analysis,
Backdoor, Exploit, Fuzzers, Generic, Reconnaissance, and
Worms with addition to Normal traffic. For our study, we focus
on binary classification, grouping all attack categories into a
single ’Attack’ label alongside the ’Normal’ class. A major
challenge in this dataset is class imbalance, where attacks
significantly outnumber normal samples, potentially biasing
predictions. To address this, we adopt a two-stage balancing
strategy first applying the Synthetic Minority Oversampling
Technique (SMOTE) to generate synthetic minority samples
while preserving the decision boundaries, followed by Edited
Nearest Neighbors (ENN) to remove mislabeled and noisy
data. Our proposed SecureDeBERTa-CNN hybrid IDS inte-
grates SecureDeBERTa a pretrained version of DeBERTa that
underwent training using cybersecurity related data (Books,
Articles, Survey Papers, Security Reports, Blogs/News), and
contextual semantic feature extraction is achieved with a
lightweight CNN for capturing localized spatial patterns.
These feature sets are fused and passed to dense layers for
final classification. We evaluated performance against classi-
cal baseline performance evaluation metrics such including
accuracy, precision, recall, and F1 score, demonstrating that
our approach delivers superior precision and robustness even
under imbalanced conditions. The remainder of this paper is
organized as follows Section II reviews related work pertinent
to the present study. Section III outlines the proposed method-
ology for developing the SecureDeBERTa-CNN framework.
Section IV presents and discusses the experimental results, and
Section V concludes the paper with key findings and potential
directions for future research.

II. RELATED WORK

The UNSW-NB15 dataset has become a widely used bench-
mark for (IDS) evaluation due to its realistic traffic pat-
terns and diverse attack scenarios. Traditional (ML) methods,
including ensemble algorithms like Random Forest, Extra
Trees, AdaBoost, and XGBoost, have been applied for bi-
nary classification, achieving competitive accuracy of 86.99%
through diversified decision boundaries [6]. Feature selection
approaches, such as gain ratio combined with multi layer per-
ceptron networks, have yielded lightweight IDS frameworks
suitable for real-time detection [7] but only got accuracy of
76.96%. While effective, these models rely heavily on manual
feature engineering and often struggle with highly complex
or evolving attack patterns. To overcome such limitations,
(DL) models have been explored for automated hierarchical
feature extraction. CNN-LSTM hybrids, for instance, capture
both spatial and temporal dependencies, while ANN based IDS
solutions optimized with adaptive algorithms like Adam have
reported strong classification accuracy of 87%.[8].

Recent work has further integrated attention mechanisms
with LSTM networks to prioritize critical traffic features,

improving sequential modeling performance [10] ,but suffers
with lower recall and f1 score. Similarly, CNN-LSTM [9]
architectures optimized via Bayesian methods have been used
for IoT intrusion detection tasks, providing effective spatial
temporal analysis of network traffic but only get accuracy
of 78.47% for binary classification.[11] used an ANN with
multiple optimizers, identifying Adam as best 94.83% training
accuracy but omitting other metrics. Building on these devel-
opments, our approach introduces a hybrid SecureDeBERTa-
CNN framework that combines the contextual modeling capa-
bilities of the SecureDeBERTa transformer with the spatial fea-
ture extraction strengths of CNN layers. The fused architecture
is designed for binary intrusion detection and is trained end-
to-end using cross-entropy loss with the AdamW optimizer.

III. METHODOLOGY

The SecureDeBERTa-CNN architecture was developed after
a detailed evaluation of the shortcomings found in some
of the traditional intrusion detection systems and iterative
experimentation with hybrid deep learning designs. To achieve
high detection accuracy and robustness, the model integrates
a dual-branch structure, the SecureDeBERTa transformer for
contextual and semantic feature extraction, and a lightweight
CNN for capturing localized structural patterns from numerical
network features. The data preprocessing pipeline addresses
the challenge of class imbalance in the UNSW-NB15 dataset
by applying the SMOTE-ENN technique, which combines
oversampling of the minority class using SMOTE with noise
reduction through (ENN). This hybrid architecture leverages
the transformer’s contextual understanding with the CNN’s
pattern recognition capability, producing a fused representation
that is highly discriminative for binary classification tasks. The
performance evaluation against classical baselines, ML and DL
models, demonstrates that the SecureDeBERTa-CNN achieves
superior detection accuracy, precision, recall, and better F1
scores. The architecture of the proposed system is illustrated
in Figure 1.

Fig. 1. SecureDeBERTa-CNN System Architecture.
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A. Dataset Description

In this study, we employ the UNSW-NB15 dataset, devel-
oped in 2015 by the Cyber Security Lab at the University
of New South Wales. The dataset was generated in the Cyber
Range Lab using the IXIA PerfectStorm tool, which simulates
a combination of contemporary benign network activities and
diverse attack scenarios. The training and testing subset con-
tains 175,341 and 82,333 records respectively, each described
by 44 features, and encompasses nine distinct attack categories
like Denial of Service, Exploit, Analysis, Worms, Backdoor,
Shellcode, Fuzzers, Generic, and Reconnaissance, in addition
to normal traffic. A notable characteristic of the UNSW-
NB15 dataset is its class imbalance, where certain attack
categories have substantially more samples than others. For the
purposes of this research, we perform a binary classification
by consolidating all attack categories into a single ’Attack’
class (Label = 1) and treating normal traffic as the ’Normal’
class (Label = 0). The resulting distribution in the training
set consists of 119,341 samples for the attack class and
56,000 samples for the normal class, highlighting the need
for effective data balancing strategies.

B. Data Balancing

Addressing the issues related to class imbalanced datasets
are known as resampling which involves either reducing the
size of the majority class that is called under sampling or
increasing the size of the minority class that called over-
sampling. In comparison, oversampling methods have gener-
ally shown better results than randomly removing majority
class instances, as done in under sampling methods. Popular
oversampling approaches include SMOTE (Synthetic Minority
Oversampling Technique) and ADASYN (Adaptive Synthetic
Sampling Technique). In this study, we utilized SMOTE for
oversampling, as it preserves information by interpolating
between existing minority class instances, avoiding the po-
tential loss of valuable data that occurs with under sampling.
However, while SMOTE is effective, it can also introduce
noise and lead to overfitting if applied carelessly. To address
this, we subsequently applied the ENN method to refine the
dataset by removing misclassified and ambiguous instances.
This technique identifies and eliminates samples that deviate
from the majority of their closest neighbors, thereby improving
dataset quality, reducing noise, and enhancing class separation.
As a result of applying the SMOTE + ENN pipeline, the final
balanced dataset contained 119,341 samples in the Attack class
(Label = 1) and 106,081 samples in the Normal class (Label
= 0), providing a more reliable and representative training set
that ultimately contributes to improved model generalization
and classification performance.

C. Dual-Branch Architecture

The architecture follows a dual path design, consisting of
a Transformer Path for semantic representation learning and
a CNN Path for statistical feature extraction. Both branches
operate in parallel on distinct representations of the same input
payload and are fused for the final classification.

1) SecureDeBERTa Feature Extraction: The text represen-
tation of network traffic (combining protocol, service, state,
and packet statistics) is processed using SecureDeBERTa’s
pretrained tokenizer with a maximum sequence length of 128
tokens. The tokenizer automatically handles padding and trun-
cation while preserving structural information in the network
traffic descriptors. The tokenized sequences (input IDs and
attention masks) are fed into the SecureDeBERTa model which
outputs contextual embeddings. For classification, we extract
the final hidden state of the [CLS] token (768-dimensional)
as the semantic representation of the input. The transformer
component remains frozen during the initial training phases,
with gradual unfreezing of layers (2→6→12) in subsequent
phases to enable fine-grained adaptation to the intrusion de-
tection task while preventing catastrophic forgetting.

2) Hybrid Feature Processing: Numerical features includ-
ing duration, packet counts, byte volumes, and TTL values are
directly extracted from the structured dataset columns. These
features undergo Robust Scaling (centering and scaling to
interquartile range) rather than standardization. The processed
features are reshaped into a temporal dimension and processed
through a multi scale 1D CNN architecture with parallel
convolutional branches (kernel sizes 3, 5, and 7). Each branch
employs Swish activation, followed by batch normalization
and dropout (rate=0.2). The architecture includes a novel
attention mechanism where a sigmoid-activated convolutional
layer learns feature importance weights, which are multiplied
with the original features before global max pooling. The
resulting compact representation preserves the most salient
numerical patterns for intrusion detection.

D. SecureDeBERTa and CNN Branches

The model employs a phased fine-tuning approach with
learning rate decay for the warm-up phase only the top 2
transformer layers are trainable with the (learning rate = 5e-
5) while maintaining the frozen backbone, allowing initial
adaptation of the classification head, later the body phase
unfreezes 6 total layers (learning rate = 3e-5) for intermediate
feature adaptation finally the finetuning phase unfreezes all 12
layers (learning rate = 2e-5) with gradient clipping (norm=1.0)
for final representation tuning.

E. Feature Fusion and Classification

The model combines features through concatenation the
[CLS] tokens from SecureDeBERTa which are merged with
processed numerical, byte and categorical features through
channel-wise fusion which is described in Equation (1)

hfused = [hDeBERTa|hCNN|hByte|hCat] (1)

The implementation strengthens robustness by combining
byte-level statistics (hByte), CNN extracted numerical patterns
(hCNN ), and SecureDeBERTa semantic features (hDeBERTa).
This fusion enhances resilience to varied attack vectors,
enabling more accurate and reliable intrusion detection in
complex and dynamic network environments.
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IV. EXPERIMENTS

A. Implementation Environment

The hybrid IDS architecture was implemented using Tensor-
Flow 2.16+ with Keras API, optimized for GPU-accelerated
training (CUDA 11.8) on NVIDIA GeForece RTX 4090
GPU. The memory-optimized configuration employed gradi-
ent check pointing (every 2 steps), bfloat16 mixed-precision
training, and XLA compilation to maximize throughput and
global gradient clipping (norm=1.0) to ensure training stability.
The model architecture combined a 12-layer SecureDeBERTa
backbone with multi scale 1D CNN (kernel sizes 3, 5, and
7) and attention gated feature fusion, culminating in a binary
classifier head.

B. Evaluation Metrics

The performance of model is evaluated using standard clas-
sification metrics. Accuracy represents the ratio of correctly
classified instances to total instances.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision represents the ratio of true positives among all
positive predictions.

Precision =
TP

TP + FP
(3)

Recall represents the ratio of true positives among all actual
positives.

Recall =
TP

TP + FN
(4)

The Harmonic F1 Score represents the mean of precision
and recall.

F1-Score = 2× Precision × Recall
Precision + Recall

(5)

C. Performance Evaluation

Evaluation metrics are used to measure the performance
of a model, we utilized different performance metrics like
accuracy, precision, recall and F1 score which are most known
to access the actual ability of a model. We tested our model
with multiple conditions, at first we tested our hybrid model
on imbalance data, for the second condition we implemented
ADASYN oversampling technique, for the next experiment
we applied SMOTE oversampling and tested our model’s
performance, and later we applied ADASYN with ENN and
SMOTE with ENN receptively and evaluated the outputs
which are shown in Table I.

TABLE I
PERFORMANCE COMPARISON OF RESAMPLING TECHNIQUES

Method Accuracy Precision Recall F1

Imbalanced Data 83.18% 76.93% 98.91% 86.55%
ADASYN 89.06% 93.37% 86.17% 89.63%
SMOTE 85.15% 79.88% 97.62% 87.86%
ADASYN + ENN 90.37% 99.61% 82.83% 90.45%
(SMOTE + ENN) 92.06% 96.91% 88.40% 92.46%

In addition to basic evaluation metrics in our experiments,
we also calculated the ROC-AUC (area under the Receiver
Operating Characteristic curve) and PR-AUC (area under
the Precision-Recall curve). In our experiment, the method
of (SMOTE + ENN) achieved ROC-AUC of 0.9788 which
indicates excellent separability, and PR-AUC of 0.9847 which
confirms robustness under class imbalance. The curves show
strong discriminative performance.

Fig. 2. ROC curve of SecureDeBERTa-CNN (AUC = 0.9788)

The binary classification results on the UNSW-NB15 dataset
Table II show that the proposed SecureDeBERTa-CNN con-
sistently outperforms both conventional and deep learning-
based IDS models. It achieves the highest accuracy of 92.06%,
precision 96.91%, and F1 score 92.46%, alongside strong
recall 88.40%, indicating effective detection of both attack
and normal traffic with minimal false positives and negatives.
AT-LSTM attains similar precision 96.00% but notably lower
recall 80.00%, reducing detection coverage. Random Forest
delivers competitive accuracy 89.31% yet suffers from reduced
recall 85.19%. ANN achieves the highest recall 93.38% but
lower precision, increasing false alarms, while DNN shows
high precision 95.10% but poor recall 68.40% limiting real-
world applicability. CNN-LSTM variants provide balanced
but generally inferior results. Overall, SecureDeBERTa-CNN
offers the best balance of precision and recall, ensuring reliable
intrusion detection performance.

TABLE II
BINARY CLASSIFICATION RESULTS ON UNSW-NB15

Method Accuracy Precision Recall F1

Random Forest[6] 89.31% 92.96% 85.19 % 91.56%
SVM 82.89% 89.78% 75.79% 85.77%
ANN [7] 86.40% 86.74% 93.38% 89.94%
DNN [4] 76.10% 95.10% 68.40% 79.60%
AT-LSTM [10] 92.00% 96.00% 80.12% 87.01%
CNN-LSTM [8] 87.10% 85.21% 88.01% 86.12%
Op CNN-LSTM [11] 78.46% 69.69% 79.69% 43.60%
(SecureDeBERTa-CNN) 92.06% 96.91% 88.40% 92.46%
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V. CONCLUSION

In this study, we proposed a hybrid intrusion detection
system (SecureDeBERTa-CNN) that effectively combines the
contextual understanding of SecureDeBERTa with the spatial
pattern recognition capabilities of a lightweight CNN. By inte-
grating a SMOTE-ENN preprocessing pipeline and employing
progressive layer unfreezing during training, our approach
addresses both class imbalance and optimization stability two
key challenges in intrusion detection for complex network
environments. Evaluated on the UNSW-NB15 dataset, the
proposed model achieves strong performance across multiple
metrics, including a 92.06% Accuracy, 96.91% precision,
88.40% recall and 92.46% f1 score, outperforming traditional
machine learning baselines such as Random Forest and SVM.
These results validate the effectiveness of hybrid transformer-
CNN architectures in binary threat classification tasks. Future
work will explore multi class extension, real-time deployment
on edge devices, and generalization to other IoT and cyber
physical datasets.
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