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Abstract—Logic Gate Networks (LGNs) are emerging as ef-
ficient alternatives to traditional neural networks by leveraging
hardware-native Boolean operations. This paper reviews recent
advancements that address the challenges posed by the discrete,
non-differentiable nature of these systems. Beginning with differ-
entiable LGNs that enable gradient-based training, stochastic and
convolutional LGNs achieve enhanced generalization and strong
performance on vision tasks. This paper concludes by discussing
open research directions, including training cost optimization,
hardware acceleration, and the design of hybrid architectures.

Index Terms—Logic gate networks, Differentiable logic gates,
Gumbel-Softmax, Convolutional logic networks, Boolean opera-
tions, Hardware-Efficient inference, architecture search

I. INTRODUCTION

Logic-based neural models originated with threshold logic
units capable of implementing arbitrary Boolean functions [1],
laying the foundation for binary neuron paradigms and com-
putations such as binary-state dynamics [2]. Their hardware-
friendly characteristics enabled efficient Boolean computa-
tions [3], particularly through FPGA implementations and
threshold logic circuits. This line of research has been continu-
ously studied and is now called Logic Gate Networks (LGNs),
where it marks a shift toward highly efficient neural archi-
tectures that operate directly on logic-level primitives, from
costly floating-point operations. LGNs utilize basic Boolean
functions—AND, OR, XOR, NAND—natively implemented
in digital hardware. This enables extreme inference efficiency,
achieving over one million images per second on a single CPU
core while preserving competitive accuracy [4].

Despite their efficiency advantages, logic-based binary neu-
ral models were largely under-explored due to their limited
expressive capacity and the difficulty of optimization arising
from their inherently discrete and non-differentiable nature [5].
Moreover, applying LGNs to complex modern Al tasks de-
mands the construction of large-scale logic circuits with care-
fully designed connectivity and gate selection, which further
complicates their design. Recently, the growing demand for
fast and energy-efficient inference has revived interest in
LGNS, spurring the development of differentiable architecture
search techniques suited to this discrete setting. Breakthroughs
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in this area have demonstrated the feasibility of fully connected
LGNs on MNIST [4], [6] and convolutional LGNs on CIFAR-
10 [7], leveraging differentiable relaxations [4] for trainabil-
ity, stochastic sampling to enhance generalization [6], and
architectural innovations to improve performance on vision
benchmarks [7].

In this paper, we review recent advances in LGNs that
demonstrate competitive performance on benchmark datasets
such as MNIST and CIFAR-10. We highlight methods that
structure LGNs analogously to deep neural networks (DNNis)
and convolutional neural networks (CNNs), and conclude by
outlining key open challenges in the field.

II. LoGic GATE NETWORKS

We provide a brief introduction to three important develop-
ments of logic gate networks. First, we explain Differentiable
LGNs that relax discrete binary logic gates to be differentiable,
enabling efficient gradient-based methods for learning LGNS.
Second, we describe Stochastic LGNs, which exploit Gum-
bel noise to relaxed gates for better generalization capacity.
Finally, we explain Convolutional LGNs, which construct the
convolutional kernel using a logic gate binary tree, achieving
better performance for complex vision tasks.

A. Differentiable Logic Gate Networks

This cornerstone innovation allows gradient-based training
of logic gate networks through continuous relaxation of dis-
crete Boolean operations [4]. This technique transforms non-
differentiable binary logic gates into differentiable real-valued
functions using probabilistic logic interpretations.

The relaxation process operates in two aspects: activations
and operations. First, binary activations {0,1} are relaxed
to probabilistic activations in the range [0, 1]. Second, each
logic gate is replaced by computing the expected value of the
activation given the probabilities of independent inputs. For
example, the logical AND operation (a; A a2) becomes the
probabilistic multiplication a; - a3, while the exclusive OR
(a1 @ a9) transforms to a1 +as — 2 - aq - as.

Applying these relaxations, it can parameterize the logic
gate selection through a learnable probability distribution.
Each neuron maintains this probability distribution over all
N possible binary logic functions g, ..., gn, encoded as the
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softmax of N trainable parameters {w;}% ;. During training,
the network evaluates all possible logic gates and computes
their weighted average according to the learned probability
distribution. The activation of a differentiable logic gate neu-
ron is computed as

fulan,az) = L, P2 giar, az).

After training, continuous networks are discretized for
hardware deployment by selecting the logic gate with the
highest probability at each neuron. This discretization process
introduces trivial accuracy loss (typically less than 0.1% for
MNIST) while enabling extremely fast inference on Boolean
hardware. Unlike traditional fully connected networks, the
resulting networks achieve a computational complexity pro-
portional to only the number of gates due to the sparsity nature
of logic operations.

B. Stochastic Logic Gate Networks

Based on the differentiable framework, stochastic logic
gate networks [6] incorporate a sampling method to improve
generalization through regularized learning. The key technique
lies in applying the Gumbel-Softmax reparameterization for
categorical distribution in logic gate selection.

The Gumbel-Softmax trick enables differentiable sampling
from categorical distributions by adding Gumbel noise to
unnormalized logits before applying softmax [8]. For logic
gate networks, this translates to the following:

exp((wi+Gi)/N)
>y exp((w;+G5) /)’

where Gumbel noise G; is sampled from Gumbel(0,1),
and w,; represents the logits equal to the above learnable
parameters, and A is the temperature parameter.

S; =

C. Convolutional Logic Gate Networks

Convolutional logic gate networks [7] introduce three tech-
niques to improve the performance for complex vision tasks:
(1) Adopt logic gate tree function to capture fixed spatial
patterns and correlations, analogous with convolutional neural
networks, (2) logical Or pooling, and (3) residual initialization
method to alleviate the vanishing gradient problem for deep
networks.

Typically, the connections of differentiable logic gates are
initialized at random, and LGN learn logic operations over the
random connectivity. Convolutional logic gate networks take
a different approach. They employ a differentiable logic gate
tree kernel to generalize edge, texture, and shapes in different
locations as with CNNs. Although this tree kernel is wired at
random in the receptive field, convolving activations with the
tree kernel processes the equivariant features more effectively
than the completely random connections.

Convolutional logic gate networks utilize logical Or pool-
ing for traditional max-pooling. This operation selects the
maximum activation over a receptive field using max(a,b)
instead of probabilistic relaxation of logical Or, a + b —
ab. The technique provides computational advantages: faster

computation than probabilistic methods, reduced memory re-
quirements (storing only maximum activation and index),
and backpropagation only through maximum activations. An
important emergent property is that training automatically
prevents activation saturation, maintaining balanced activation
levels without explicit regularization

Convolutional logic gate networks employ “residual ini-
tializations” to address the vanishing gradient problem in
deep logic gate networks. Each logic gate is initialized to be
primarily a feedforward gate (typically o’ = f(a1,a2) = a3
with 90% probability). This initialization prevents information
loss and gradient vanishing in deeper networks, enabling
effective training beyond the previous 6-layer limitation of
LGNs. The technique acts as a differentiable form of residual
connections without requiring additional logic gates, and the
bias toward feedforward operations reduces transistor count in
hardware implementations.

The combination of tree structures and Or pooling enables
substantial computational improvements. Fused CUDA kernels
process entire logic gate trees and pooling operations in
single kernel calls, reducing memory accesses by 68% and
memory footprint by 90% during training. The convolutional
implementation achieves up to 200x speed improvement per
logic gate compared to randomly connected implementations.

III. CONCLUSION

Logic Gate Networks (LGNs) offer a hardware-friendly
alternative to traditional neural networks by using continuously
relaxed logic gates, enabling ultra-fast and energy-efficient
inference. Innovations like Gumbel-Softmax sampling, tree-
based convolutions, and residual initialization have evolved
LGNs into practical solutions for edge and embedded systems.

Future work should focus on improving training scalability,
as current methods are still costlier than conventional networks
due to multiple operator evaluations per neuron. Enhancing
input connectivity, designing hardware accelerators, and inte-
grating LGNs with standard neural components also present
promising research directions.
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