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Abstract—This paper proposes a deep learning-based method
for suppressing inter-symbol interference (ISI) and inter-carrier
interference (ICI) in orthogonal time frequency space (OTFS)-
based systems. In conventional OTFS-based systems, the accuracy
of channel estimation degrades due to ISI and ICI. To address
this problem, we design a neural network that restores the
time-domain received signal by removing the effects of ISI and
ICI while preserving the channel characteristics. The proposed
network adopts the U-Net architecture with attention blocks, and
it is trained on simulated datasets that cover diverse numbers
of targets and a wide range of signal-to-noise ratio values. We
evaluate the training process based on the measure of loss conver-
gence to ensure stable learning. The performance improvement
is then quantified by the root mean square error (RMSE), which
is reduced from 0.42 to 0.30. Finally, the effectiveness of the
proposed method is verified by reconstructing the target profile
in the OTFS-based sensing system, showing successful restoration
even at 0 dB. These findings demonstrate that the proposed
method effectively mitigates ISI and ICI and provides robust
performance of target detection in OTFS-based sensing systems.

Index Terms—deep learning, inter-carrier interference (ICI),
inter-symbol interference (ISI), orthogonal time frequency space
(OTES).

I. INTRODUCTION

Modern wireless communication systems are required to
maintain reliable performance while achieving high spec-
tral efficiency. In sixth-generation communications, integrated
sensing and communication (ISAC) is emerging as a core tech-
nology that provides both stable communication and precise
sensing in high-mobility environments [1], [2]. Orthogonal
time frequency space (OTFS) has attracted significant attention
as a modulation technique for next-generation ISAC systems
because it can simultaneously support communication and
sensing in high-mobility environments [3]. OTFS assigns data
symbols in the delay-Doppler (DD) domain, rather than as-
signing them in the conventional time-frequency (TF) domain.
The DD domain directly reflects the fundamental channel
characteristics of delay and Doppler shift, and it remains quasi-
static even in channels with high Doppler shifts [4], [S]. As
a result, OTFS offers the advantage of maintaining reliable
performance under high mobility and severe fading conditions
compared to TF domain-based modulation schemes [6], [7].

In practical channel conditions, OTFS-based systems are
affected by several factors of performance degradation. The
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most prominent among these are inter-symbol interference
(ISI) and inter-carrier interference (ICI). When ISI occurs, the
delay spread of the channel causes signal overlap between
adjacent symbols, and its impact becomes more severe as the
spread increases [8], [9]. Similarly, when ICI occurs, Doppler
spread induces interference between adjacent Doppler bins.
The effect intensifies with increasing Doppler shift induced
by the channel [10], [11].

Representative conventional methods to mitigate such inter-
ference are cyclic prefix (CP) and zero padding (ZP). The
CP is generated by copying the end of the symbol to its
beginning so that linear convolution is converted into circular
convolution. The addition of CP reduces the data rate per
unit time under a fixed bandwidth and therefore decreases
spectral efficiency [12]. In the case of ZP, zero values are
inserted at the beginning of a symbol to eliminate symbol
overlap [13]. Under the same transmit power constraint, the
inclusion of a zero interval reduces the average power allocated
to the valid symbols, which results in a loss of signal-to-
noise ratio (SNR). In addition, this also leads to an increase in
the peak-to-average power ratio (PAPR), which is undesirable
for practical systems. Furthermore, the lengths of CP and
ZP must exceed the maximum channel delay, which can
lead to significant overhead when channels with large delay
spreads are considered. These conventional methods suffer
limitations such as spectral efficiency reduction and power
loss. To overcome them, we propose a deep learning-based
approach for ISI and ICI suppression. The proposed method
combines an attention block with a U-Net-based network to
accurately predict and remove complex interference patterns.
By directly learning and suppressing interference components
in the time-domain signal, the proposed method restores an
interference-free signal, thereby significantly enhancing the
performance of OTFS-based sensing systems.

II. SIGNAL MODEL OF OTFS-BASED SYSTEMS

In the OTFS modulation scheme, the information bits are
assigned to complex-valued quadrature amplitude modulation
(QAM) symbols. The modulated QAM symbols are mapped
onto the DD domain, where the symbol located at Doppler bin
k and delay bin [ is denoted by xpp [k, I]. These symbol rep-
resentations in the DD domain are subsequently transformed
into the TF domain via the inverse symplectic fast Fourier
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transform. The transmitted signal in the TF domain can be
expressed as

e Ui ml kK

zrr[k’, m] ];)IZxDDklexp(j%r(MN)),

(1)
where M denotes the number of subcarriers, /N denotes the
number of time slots, and k&’ and m denote the subcarrier
and time bins in the TF domain, respectively. The TF domain
signal is converted into the time domain by applying the
Heisenberg transform, and the resulting time-domain signal
is upconverted and then transmitted, which can be expressed

as
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Here, f. denotes the carrier frequency, Af is the subcarrier
spacing, and 7' is the symbol duration. After propagating
through the channel, the transmitted signal is received and
downconverted to baseband for subsequent processing. The
received signal is transformed back to the DD domain by
applying the symplectic fast Fourier transform and the Wigner
transform. The resulting DD-domain received signal can be
approximated as a two-dimensional (2D) convolution between
the channel response and the transmitted signal, expressed as
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where h[k’, I'] denotes the channel response in the DD do-
main. Here, [-]x and [-]y represent the modulo-N and modulo-
M operations, respectively.

In the OTFS-based sensing system, the channel response
h[k', I'] in (3) can be interpreted as the target response, which
includes information about the range and velocity of the target.
Then, the range and velocity of the target can be obtained
through 2D deconvolution, as follows: the received signal in
the DD domain is first converted to the frequency domain
via the 2D discrete Fourier transform. Spectrum separation
is then performed to eliminate the influence of data symbols
and to retain only the components associated with the target.
Subsequently, the 2D inverse discrete Fourier transform is
applied to transform the signal back into the DD domain.
Finally, the range and velocity of the target can be directly
estimated from the processed DD-domain signal.

III. PERFORMANCE DEGRADATION DUE TO ISI AND ICI
IN OTFS-BASED SYSTEMS

In the ideal case, the received signal in the DD domain can
be approximated as a 2D convolution between the channel
response and the transmitted signal as in (3). However, in
practical systems the received signal in the DD domain cannot
be expressed in the form of (3), because delay and Doppler

spread of the channel result in ISI and ICI, respectively.
Specifically, ISI arises when the maximum delay spread of
the channel exceeds the guard interval, such as CP and ZP.
Similarly, ICI results from Doppler spread of the channel,
which leads to coupling between adjacent Doppler bins. As a
result, additional phase terms are multiplied with the received
signal, and the received signal can no longer be approximated
as a simple 2D convolution. The DD-domain received signal
that accounts for these effects can be expressed as

—1M-1
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where the first and second exponential terms are due to ICI
and ISI, respectively, and u(-) denotes the unit step function.

In the presence of ISI and ICI, the reflected signal energy
is not concentrated in the DD grid point that represents the
channel-induced delay and Doppler shift. Instead, it disperses
into adjacent bins, which causes spectral leakage. This disper-
sion lowers the effective SNR of the corresponding DD grid
point. In the OTFS-based sensing system, the target response
usually concentrates within a single DD grid point. Detection
performance can be significantly degraded when the attenuated
response is further corrupted by noise. Furthermore, when
this attenuation is added to noise, the target may become
undetectable, which can be observed in Fig. 1 (a). As shown
in Fig. 1 (a), when ISI and ICI are taken into account, only
Target 1 with a small delay bin is clearly detected. In contrast,
Fig. 1 (b) shows that when ISI and ICI are absent, both Target 1
and Target 2 are successfully detected. This implies that OTFS
is inherently robust against ICI caused by Doppler spread but
vulnerable to ISI. Such an observation can also be explained by
the structure of the phase terms. The phase term corresponding
to ICI can be expressed as exp(ji |k — k']nl’), which
is scaled by the frame size M N. Therefore, when M N is
sufficiently large, the accumulated interference is naturally
suppressed. On the other hand, the phase term corresponding
to ISI can be expressed as exp(j3Ziu(—k + k')). As the
signal delay increases due to the channel, phase dispersion
becomes more severe, and the energy spreads into adjacent
delay bins. Therefore, in the OTFS-based system, performance
degradation is mainly caused by ISI, which critically limits the
detection of distant targets.

IV. PROPOSED METHOD FOR INTERFERENCE MITIGATION
A. Configuration of Training Dataset

The objective of the proposed method is to reconstruct the
time-domain received signal by removing the effects of ISI
and ICI, thereby approximating an interference-free signal. To
achieve this goal, a deep learning-based suppression approach
for ISI and ICI is suggested. The neural network is trained
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Fig. 1. Comparison of target responses in the DD domain for Target 1 (delay
bin: 20, Doppler bin: 61) and Target 2 (delay bin: 118, Doppler bin: 15): (a)
with ISI and ICI effects and (b) without ISI and ICI effects.

with the time-domain received signal affected by ISI and ICI
as the input, and the corresponding interference-free signal as
the ground truth. In this way, the network learns to mitigate
ISI and ICI. The time-domain signal not only reflects the
influence of ISI and ICI but also retains the complete channel
characteristics. These features allow the network to effectively
capture and suppress interference patterns. In addition, once
the restoration is performed in the time-domain, subsequent
signal processing can be performed based on the ideal signal,
which extends the applicability of the proposed method. The
training dataset is generated through simulations that reflect
diverse scenarios, and the system parameters adopted in this
paper are summarized in Table I. Specifically, both single-
target and multi-target cases are considered by setting the
number of targets to range from 1 to 5. Furthermore, the SNR
is varied from 0 dB to 30 dB so that the network can be trained
under various SNR values.

TABLE I
PARAMETERS USED IN SIMULATIONS
Parameter Value
Data modulation scheme 16-QAM
Center frequency (GHz) 24
Bandwidth (MHz) 61.44
The number of Doppler bins 64
The number of delay bins 128

B. Structure of Proposed Neural Network

In this paper, we propose the deep learning-based model that
removes ISI and ICI from the time-domain signal. It restores
clean signals by applying the U-Net architecture together with
attention blocks. The structure of the proposed neural network
is shown in Fig. 2. The input stage of the network receives
two channels corresponding to the in-phase and quadrature
components of the time-domain received signal. These inputs
are converted by a convolution (Conv) layer into feature maps
suitable for interference mitigation. The resulting feature maps
are also stored as an input residual, which is used in the final
output stage.

The encoder performs hierarchical feature extraction
through 4 stages, where each stage is composed of a Conv
block and a max pooling operation. Within each Conv block,
a Conv operation is followed by batch normalization (BN)
and a rectified linear unit (ReLU) activation function. BN
normalizes the distribution of feature maps across channels to
enhance training stability. In turn, ReLU offers nonlinearity,
allowing the network to capture complex interference patterns.
After this process, dropout is applied to prevent overfitting,
and the second Conv operation is performed. The output is
subsequently passed through BN and ReL.U once again, which
enhances the ability to extract features of the network. In
the first block, the number of input channels is expanded
from 2 to 32, and in the subsequent blocks the number
of channels is increased step by step to 64, 128, and 256.
Finally, max pooling gradually reduces the spatial resolution,
which facilitates the learning of global patterns. The final
output of the encoder is expressed as a feature map with 512
channels obtained through a Conv layer in the bottleneck stage,
and this is followed by a residual block. The residual block
contains 2 Conv layers together with BN and ReLU, and it
is designed such that the input tensor is added directly before
it enters the activation function. This structure alleviates the
vanishing gradient problem that may occur in deep networks
and improves training efficiency.

The decoder restores spatial resolution through 4 stages
of upsampling, and each stage performs a skip connection
using an attention block. In the attention block, the upsampled
feature map from the decoder and the corresponding feature
map from the encoder are each passed through a Conv layer
to extract important features from both inputs. The resulting
feature maps are then added elementwise, and the output is
sequentially processed by ReLU, Conv, BN, and finally a
sigmoid function to generate an attention mask. This mask
is multiplied with the encoder feature map so that only the
information at important spatial locations is emphasized. The
feature map of the encoder enhanced by the attention block
captures fine local details. In contrast, the feature map of the
decoder after upsampling represents global contextual infor-
mation, and together they provide complementary information.
The masked feature map of the encoder, obtained after sigmoid
activation, is concatenated with the upsampled feature map
of the decoder along the channel dimension, which results
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Fig. 2. Architecture of the proposed neural network for ISI and ICI mitigation in the OTFS-based system.

in a doubling of the number of channels. The Conv layer is
subsequently applied to fuse the local and global features while
reducing the number of channels. The attention mechanism
directs the decoder to encoder features that are most relevant
for reconstructing interference components. Less informative
regions are suppressed, which helps the network produce more
accurate interference predictions.

The final output of the decoder is transformed into the
prediction of the interference through the output module. The
output module sequentially reduces the number of channels
to 16 and then to 2 through each Conv layer, and applies the
hyperbolic tangent (Tanh) as the activation function. The Tanh
constrains the output range, which enhances training stability
and prevents the network from overestimating the interference
magnitude. The clean signal without interference is finally
obtained by subtracting the predicted interference signal from
the stored input residual. This architecture encourages the
network to predict the interference components instead of
directly generating the restored signal, which simplifies the
learning process and accelerates convergence.

C. Loss Function

To train the proposed network, we adopt a loss function
that evaluates the prediction errors of both the real and
imaginary components of the received signal. Specifically,
the mean squared error (MSE) is computed for each channel
independently, and the two errors are aggregated to form the
final loss. The loss function is defined as

N
1 . N
Lvse = N Z ((yRe,i - yRe,i)2 + (ylm,i - ylm,i)2> , ()
i=1

where yre ; and ygre,; denote the ground truth and predicted
values of the real channel, and yiy,,; and im,; denote those
of the imaginary channel, respectively. Here, IV represents the
total number of samples.

D. Setting of Training Parameters

The experiments were implemented using the PyTorch
framework. The training dataset consisted of 5000 samples,
with 80 percent allocated for training and 20 percent reserved
for validation. Because signals from distant targets are more
vulnerable to ISI, the dataset was designed to emphasize such
cases. Specifically, when the total number of delay bins is
128, 70% of the samples were generated with target delays
between 60 and 125. The network was trained for 50 epochs
with a batch size of 32 using the adaptive moment estimation
optimizer with a learning rate of 0.0002.

V. PERFORMANCE EVALUATION

The performance of the proposed method was evaluated
through the convergence of the loss function, the root mean
square error (RMSE) metric, and the restoration results of the
target response. First, the value of the loss function during
training is shown in Fig. 3. The loss values for both the training
and validation datasets decreased steadily and converged to
sufficiently small values after approximately 10 epochs. This
confirms that the proposed network was trained stably and
achieved generalization capability without overfitting. Also,
the RMSE was calculated for quantitative evaluation. The
proposed network reduced the RMSE from 0.42 to 0.30.
This indicates that the proposed method effectively mitigates
interference and produces outputs that are similar to the ground
truth.

_ 025 T I
m 02 =—8— Training loss
2.5 — o~ Validation loss
7]
2]
3 0.1
8 PP P
5 10 15 20 25 30 35 40 45 50

The number of epochs

Fig. 3. Training and validation loss of the proposed network.
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Fig. 4. The delay profiles: (a) ground truth signal, (b) input signal with
ISI/ICI, and (c) restored output signal.

Finally, based on the received signals obtained from the pro-
posed method, the sensing performance was evaluated through
simulations focusing on reconstruction of the target response.
For this evaluation, the received signals were generated at an
SNR of 0 dB using arbitrary inputs that were not part of the
training dataset. Fig. 4 illustrates the delay profiles of the target
responses, and Fig. 5 shows the corresponding Doppler pro-
files. Each figure compares the ground truth signal, the input
signal with interference, and the output signal reconstructed by
the proposed network. The three targets are located at distinct
positions in the DD grid: Target 1 with the 35th delay bin and
the 60th Doppler bin, Target 2 with the 113th delay bin and
the 30th Doppler bin, and Target 3 with the 120th delay bin
and the 62nd Doppler bin.

In the input signal with interference, Target 2 and Target 3
observed at large delay bins were not properly detected. In
contrast, Target 1, which has a relatively small delay bin
but a high Doppler bin, was successfully detected. With
the proposed method, the delay and Doppler profiles were
successfully restored. This result shows that interference was
effectively suppressed, and targets with large delays or high
Doppler shifts were accurately restored without performance
degradation.

VI. CONCLUSION

This paper proposed a deep learning-based method to sup-
press ISI and ICI in the OTFS-based system. The method
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Fig. 5. The Doppler profiles: (a) ground truth signal, (b) input signal with
ISI/ICI, and (c) restored output signal.

was designed to restore the time-domain received signal by
training a U-Net-based architecture with attention blocks to
predict and remove interference components. The training
dataset was designed to reflect diverse environments under
various SNR conditions and target scenarios. Each sample
was constructed as a pair, with the ISI/ICI-distorted signal as
the input and the corresponding interference-free signal as the
ground truth. The proposed network converged stably during
training and demonstrated strong generalization performance.
Simulation results showed that the RMSE was reduced from
0.42 for the input signal to 0.30 for the output of the proposed
method. Furthermore, at an SNR of 0 dB the proposed method
successfully restored delay and Doppler profiles similar to
those obtained from the ground truth signal. These results
demonstrate that the proposed method effectively mitigates ISI
and ICI in the OTFS-based system and provides robust target
detection even in low-SNR values.
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